基于先验距离约束的3D卷积毫米波雷达目标检测方法
DOI:
CSTR:
作者:
作者单位:

河北工业大学电子信息工程学院 天津 300401

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:

京津冀基础研究合作专项(H2021202008,J210008)、内蒙古自治区纪检监察大数据实验室开放课题(IMDBD202105)项目资助


3D convolutional millimeter wave radar target detection method based on prior distance constraints
Author:
Affiliation:

School of Electronic Information Engineering, Hebei University of Technology,Tianjin 300401, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    用于辅助和自动驾驶系统的各种传感器中,相机和激光雷达的感知性能受天气影响较大,而车载毫米波雷达是一种低成本且几乎不受天气影响的全天候工作器件,对于运动的物体,可提取丰富的多普勒信息。随着雷达技术和开源标注数据集的发展,基于底层雷达数据的目标检测已经成为一个非常有前景的领域。为解决车载毫米波雷达数据的角度分辨率低导致的目标检测和定位不准确的问题,并提升毫米波雷达目标检测的性能,提出了一种基于先验框距离约束的3D卷积毫米波雷达目标检测方法,以实现多种动态目标的检测及分类。在本文方法中,通过设计3D ResNet的特征提取器来表征距离-角度-多普勒张量中的目标信息,解决现有的模型因忽略来自原始3D雷达信号的多普勒信息而表征不足的问题;其次,添加了绝对距离损失函数来训练模型,克服距离对目标呈现的影响,提高目标检测的准确性和鲁棒性;此外,还提出了分距离单元区间重新设置先验框的方法,解决现有方法中先验框设计不合理的问题。所提出的模型在RADDet数据集上进行训练以及测试,实验结果表明:与目前的最先进的方法相比,本文模型在IoU阈值为0.1、0.3、0.5、0.7时均达到最优,其中IoU为0.1和0.3时提升最为显著方法,分别提升了6.6%和5.1%。

    Abstract:

    Among the varIoUs sensors used in assisted and automatic driving systems, the perception performance of cameras and lidar is greatly affected by the weather, while the automotive millimeter-wave radar is a low-cost and almost weather-free all-weather working device.Moving objects can extract rich Doppler information. With the development of radar technology and open-source labeled datasets, object detection based on underlying radar data has become a very promising field. To address the issue of inaccurate target detection and positioning caused by low angular resolution of onboard millimeter wave radar data, and to improve the performance of millimeter wave radar target detection, this paper proposes a 3D convolutional millimeter wave radar target detection method based on prior box distance constraint to achieve the detection and classification of multiple dynamic targets. In our method, we design a feature extractor for 3D ResNet to characterize target information in Range Azimuth Doppler tensor, solving the problem of insufficient representation in existing models due to ignoring Doppler information from the original 3D radar signal; Secondly, an absolute distance Loss function is added to train the model to overcome the influence of distance on target presentation and improve the accuracy and robustness of target detection; In addition, a method of resetting prior boxes based on distance unit intervals has been proposed to solve the problem of unreasonable prior box design in existing methods.The proposed model is trained and tested on the RADDet dataset. The experimental results show that compared with the current state-of-the-art method, our model achieves the best when the IoU threshold is 0.1, 0.3, 0.5, 0.7, where IoU The improvement is the most significant when it is 0.1 and 0.3, which are increased by 6.6% and 5.1% respectively.

    参考文献
    相似文献
    引证文献
引用本文

杨文慧,杨宜菩,杨帆,郭亚,张玉博.基于先验距离约束的3D卷积毫米波雷达目标检测方法[J].电子测量技术,2023,46(23):85-96

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-21
  • 出版日期:
文章二维码