基于结构重参数化的目标检测模型
DOI:
CSTR:
作者:
作者单位:

1.南通大学交通与土木工程学院 南通 226019; 2.南通大学信息科学技术学院 南通 226019

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Object detection model based on structural re-parameterization
Author:
Affiliation:

1.School of Transportation and Civil Engineering, Nantong University,Nantong 226019, China; 2.School of Information Science and Technology, Nantong University,Nantong 226019, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    虽然多尺度感受野特征融合能显著提升目标检测模型的精度,但同时也大大增加了模型的运算成本。针对这一问题,本文提出了基于结构重参数化的目标检测模型。首先,使用深度卷积代替SPP中的最大池化,并利用结构重参数化降低模块运算量,提出了新的感受野特征融合模块CspRepSPP。接着,基于结构重参数化技术,提出了新的特征提取模块RepBottleNeck。实验结果表明,在VOC 2012数据集上,相比原模型YOLOv5s,本文模型在mAP05:095指标上提升了322%,单张图片的推理速度提升了05 ms,GFLOPs降低了10。与其他YOLOv5s改进算法相比,本文算法检测精度更高,推理速度更快,参数量更低。

    Abstract:

    The fusion of multiscale receptive field feature can remarkablely improve the detection accuracy of models, but it also greatly increases the computational cost of models at the same time. To address this issue, we propose the object detection model based on structural reparameterization. Firstly, max pooling in SPP is substituted by depthwise convolution, while structural reparameterization is utilized to reduce computational complexity of module simultaneously. Based on this, we propose a new multiscale receptive field feature fusion module, called CspRepSPP. Additionally, a new feature extraction module, named RepBottleNeck, is proposed according to structural reparameterization. Experimental results show that, compared with the original YOLOv5s model, the mAP05:095 of our model is improved by 322 percentage points, the detection speed of single image is improved by 05 ms, and the GFLOPs is reduced by 10. Compared with other improved methods based on YOLOv5s, our method shares higher detection accuracy, faster inference speed, and lower number of parameters.

    参考文献
    相似文献
    引证文献
引用本文

吕昌,尹和,邵叶秦.基于结构重参数化的目标检测模型[J].电子测量技术,2023,46(18):114-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-10
  • 出版日期:
文章二维码