视觉激励调制对脑电信号识别的影响研究
DOI:
CSTR:
作者:
作者单位:

青岛科技大学自动化与电子工程学院 青岛 266061

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金青年基金(62006135)、山东自然科学基金青年基金(ZR2020QF116)项目资助


Research on the influence of visual stimulation modulation on EEG signal recognition
Author:
Affiliation:

College of Automation and Electronic, Qingdao University of Science and Technology,Qingdao 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对不同的视觉激励调制方式导致某些被试分类准确率较低的问题,本文设计了4种频率的4种波形激励诱发范式,并首次提出倒锯齿波激励范式。实验采集了8名被试的脑电信号并通过提取频率能量特征及分类发现不同激励对被试的准确率产生不同的影响。在此基础上,选择诱发被试最高能量的波形组成定制范式,并与各被试的其余范式进行平均分类准确率对比。结果表明,首次提出的倒锯齿波的激励效果要好于传统激励范式,同时,定制范式相比于单一波形激励的平均准确率提高了3%~12%。因此,倒锯齿波及定制视觉激励范式可以提高SSVEP-BCI系统的性能。

    Abstract:

    Aiming at the problems that different visual stimulation modulations methods will lead to low classification accuracies of some subjects, this paper designed four stimulation waveforms with four frequencies which were used to design the evoking paradigm, and the inverted sawtooth wave evoking paradigm was proposed for the first time. Eight subjects' EEG signals were collected in the experiment. By extracting and classifying frequency energy features, it was found that different stimuli have different influences on the classification accuracy. On this basis, the waveforms with the highest energy were selected to form a customized paradigm; the average classification accuracies among different stimulation waveforms and customized paradigm were compared. The experimental results show that the inverted sawtooth stimulation paradigm is better than any other traditional stimulation paradigm. Meanwhile, the average accuracy of the customized paradigm is 3%~12% higher than that of any other stimulation paradigm. Therefore, the stimulation paradigms of inverted sawtooth and customized waveforms can improve the performance of SSVEP-based BCI system.

    参考文献
    相似文献
    引证文献
引用本文

卢美林,樊春玲,毛晓前.视觉激励调制对脑电信号识别的影响研究[J].电子测量技术,2023,46(23):120-126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-21
  • 出版日期:
文章二维码