基于改进DBO优化BiLSTM的IGBT老化预测模型
DOI:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院 焦作 454003; 2.河南省煤矿装备智能检测与控制重点实验室 焦作 454003

作者简介:

通讯作者:

中图分类号:

TN322.8; TN306

基金项目:

河南省科技攻关项目(202102210094)、国家重点研发计划专项(2016YFC0600906)、河南理工大学博士基金(B2021-23)项目资助


IGBT aging prediction model based on improved DBO optimization BiLSTM
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University,Jiaozuo 454003, China; 2. Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Jiaozuo 454003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了表征逆变器故障中IGBT模块的老化趋势,提高老化过程的预测精度,本文提出一种基于改进蜣螂搜索算法(IDBO)优化双向长短期神经网络(BiLSTM)超参数的IGBT老化预测模型。首先提取老化过程中Vce.on的时频域特征,利用核主成分分析进行降维构建归一化综合指标。其次,针对蜣螂搜索算法(DBO)的不足,通过引入改进Circle混沌映射、Levy飞行和自适应权重因子提升了DBO寻优能力和收敛性能,利用IDBO对BiLSTM预测模型超参数实现全局寻优。最后,通过实际IGBT退化数据验证了基于IDBO优化BiLSTM老化预测模型的有效性和优越性。结果表明,所构建的IDBOBiLSTM模型与BiLSTM模型相比RMSE平均下降36.42%、MAE平均下降31.77%、MAPE平均下降41.03%。

    Abstract:

    In order to characterize the aging trend of IGBT modules in inverter faults and improve the prediction accuracy of the aging process, this paper proposes an IGBT aging prediction model based on improved dung beetle optimizer (IDBO) optimizing the hyper-parameters of bidirectional long-short-term neural network (BiLSTM). Firstly, the timefrequency domain features of Vce.on in the aging process are extracted, and the normalized composite index is constructed by dimensionality reduction using kernel principal component analysis. Secondly, to address the shortcomings of the dung beetle optimizer (DBO), the optimization ability and convergence performance of the DBO are improved by introducing the improved Circle chaotic mapping, Levy flight, and adaptive weighting factors, and the global optimization is achieved by using the IDBO for the hyperparameters of the BiLSTM prediction model. Finally, the effectiveness and superiority of the BiLSTM aging prediction model optimized based on IDBO are verified by actual IGBT degradation data. The results show that the constructed IDBO-BiLSTM model reduces RMSE by 36.42%, MAE by 31.77%, and MAPE by 41.03% on average compared with the BiLSTM model.

    参考文献
    相似文献
    引证文献
引用本文

韩素敏,赵国帅,尚志豪,余悦伟,郭宇.基于改进DBO优化BiLSTM的IGBT老化预测模型[J].电子测量技术,2024,47(1):46-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-24
  • 出版日期: