面向特征选择任务的改进蜣螂优化算法
DOI:
CSTR:
作者:
作者单位:

东北林业大学计算机与控制工程学院 哈尔滨 150000

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

国家自然科学基金面上项目(52071074)资助


Improved dung beetle optimization for feature selection tasks
Author:
Affiliation:

College of Computer and Control Engineering,Northeast Forestry University,Harbin 150000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    蜣螂优化算法是一种基于蜣螂不同行为模式的新型启发式算法,与其他算法相比的收敛速度更快,逃脱局部最优的能力更强。针对蜣螂优化算法不能进行特征选择的问题,在蜣螂优化算法的基础上提出了蜣螂灰狼融合算法。该算法基于3种改进策略:精英初始化种群策略、灰狼蜣螂融合策略、运行加速策略,进一步提高蜣螂优化算法在特征选择任务上的性能,并给出了算法整体的伪代码。实验结果表明,比较其他改进型启发式算法,蜣螂灰狼融合优化算法在12个分类数据集中能够得到更高精度、更低维度的特征子集,同时兼备收敛速度、运行速度更快的优点。

    Abstract:

    The dung beetle optimization (DBO) algorithm is a novel heuristic algorithm inspired by the behaviors of dung beetles. It exhibits faster convergence speed and stronger ability to escape local optima compared to other algorithms. However, the DBO algorithm lacks the capability of performing feature selection. In this paper, propose algorithm of dung beetle and grey wolf fusion (DBOG) as an improvement to the DBO algorithm specifically designed for feature selection tasks. The DBOG incorporates three enhancement strategies: elite initialization population strategy, grey wolf-dung beetle fusion strategy, and runtime acceleration strategy. These strategies aim to further enhance the performance of the DBO algorithm in feature selection tasks. Additionally, we provide pseudocode for the overall algorithm. Experimental results demonstrate that, compared to other improved heuristic algorithms, the DBOG achieves higher accuracy and lower-dimensional feature subsets across 12 classification datasets. Moreover, it offers advantages such as faster convergence speed and computational efficiency.

    参考文献
    相似文献
    引证文献
引用本文

李珺,徐秦.面向特征选择任务的改进蜣螂优化算法[J].电子测量技术,2024,47(1):79-86

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-24
  • 出版日期:
文章二维码