高光谱图像去噪的稀疏空谱Transformer模型
DOI:
作者:
作者单位:

南京信息工程大学 计算机学院、网络空间安全学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

国家自然科学基金(62276139,U2001211)


Hyperspectral Image Denoising with Sparse Spatial-spectral Transformer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱图像(Hyperspectral Image)是由光谱仪捕获的一种三维图像数据,然而高光谱成像过程中常常会受到在多种类型噪声的干扰与污染,不利于高光谱图像的后续分析与应用,对高光谱图像的去噪处理具有重要的应用需求。尽管Transformer的应用有效提升了高光谱图像去噪的性能,但原始的Transformer模型对高光谱图像空间-光谱耦合关联性的利用仍存在不足,对空间特征的处理存在过于平滑现象,容易丢失小尺度结构,且在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用。为了解决这些问题,本文提出了一种新的稀疏空谱Transformer模型,在空间维度,引入局部卷积模块增强空间特征细节,应对过于平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择最相关的光谱通道信息进行特征交互,从而能够有效捕获空谱特征。通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。实验结果表明,本文提出的方法在高斯噪声和复杂混合噪声条件下都优于当前的先进方法,消融实验也验证了本文稀疏空谱Transformer模型的有效性。

    Abstract:

    "Hyperspectral Image (HSI) is a three-dimensional image data captured by spectrometers. However, during hyperspectral imaging, it often encounters interference and contamination from various types of noise, which hinders the subsequent analysis and application of HSIs, making denoising of high importance. Although the application of Transformers has effectively improved the performance of HSI denoising, the original Transformer model still has limitations in utilizing the spatial-spectral coupling correlation within HSIs. It tends to over-smooth spatial features, leading to the loss of small-scale structures, and overly focuses on all channel features in the spectral dimension, lacking the utilization of differences among different spectral bands. To address these issues, we propose a novel sparse spatial-spectral Transformer model. In the spatial dimension, we introduce a local convolution module to enhance spatial feature details and mitigate the over-smoothing issue. Simultaneously, in the spectral dimension, we propose a Top-k sparse self-attention mechanism to adaptively select the most relevant spectral channel information for feature interactions, effectively capturing spatial-spectral features. HSI denoising is achieved through hierarchical residual connections in the sparse spatial-spectral Transformer. Experimental results demonstrate that our proposed method outperforms current state-of-the-art approaches under Gaussian noise and complex mixed noise conditions. Furthermore, ablation experiments validate the effectiveness of our sparse spatial-spectral Transformer model."

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-08
  • 最后修改日期:2023-10-24
  • 录用日期:2023-10-24
  • 在线发布日期:
  • 出版日期: