高光谱图像去噪的稀疏空谱Transformer模型
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学计算机学院网络空间安全学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

国家自然科学基金(62276139,U2001211)项目资助


Hyperspectral image denoising with sparse spatial-spectral transformer
Author:
Affiliation:

School of Computer Science & School of Cyberspace Security, Nanjing University of Information Science & Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用;为了应对这些问题,本文提出了一种新的稀疏空谱Transformer模型,提升了对空谱耦合关联性的利用。在空间维度,引入局部增强模块增强空间特征细节,应对过平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择前K个最相关的光谱通道特征进行特征交互,从而能够有效捕获空谱特征。最终通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。在ICVL数据集上分别对高斯噪声和复杂噪声进行去噪处理,峰值信噪比分别达到40.56 dB和40.19 dB,证明了本文提出的稀疏空谱Transformer模型优越的性能。

    Abstract:

    The application of Transformer models has improved the performance of hyperspectral image denoising. However, the original Transformer model still falls short in effectively leveraging the spatial-spectral coupling in HSIs. It tends to excessively smooth spatial features, leading to the loss of small-scale structures. Moreover, it overly emphasizes all spectral channel features, neglecting the differences between different spectral bands. In order to solve these problems, this paper introduces a novel Sparse Spatial-Spectral Transformer model, enhancing the utilization of spatial-spectral coupling. In the spatial dimension, a local enhancement module is introduced to refine spatial feature details and deal with oversmoothing problem. Simultaneously, in the spectral dimension, a Top-k sparse self-attention mechanism is proposed, which adaptively selects the top-K most relevant spectral channel features for feature interaction, effectively capturing spatial-spectral characteristics. Ultimately, hyperspectral image denoising is achieved through hierarchical residual connections with the Sparse Spatial-Spectral Transformer. On the ICVL dataset, denoising performance for both Gaussian noise and complex noise attains peak signal-to-noise ratios of 40.56 dB and 40.19 dB, respectively, demonstrating the superior performance of the proposed Sparse Spatial-Spectral Transformer model in this paper.

    参考文献
    相似文献
    引证文献
引用本文

杨智翔,孙玉宝,白志远,栾鸿康.高光谱图像去噪的稀疏空谱Transformer模型[J].电子测量技术,2024,47(1):150-158

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-24
  • 出版日期:
文章二维码