Abstract:In order to solve the problem of spectrum scarcity and frequent user switching in wireless networks, this paper proposes a VLC-WiFi heterogeneous access and hysteresis soft switching algorithm based on quadrant segmentation. According to the three-dimensional coordinate system, the indoor area is divided into four parts to establish a user rate model, obtain the user rate, and establish an occlusion model to simulate the scenario of VLC link being occluded. Users perform access operations based on parameters such as location, quadrant, occlusion, and speed. Switching differentiates the threshold between inward switching and outward switching based on hysteresis, creating a flexible space for switching and suppressing the ping pong effect. In the 5 m×5 m×5 m indoor space, multiple experiments have shown that the indoor VLC-WiFi heterogeneous networking scheme proposed in this article reduces the number of horizontal switches by 43.8%, the number of occlusion and vertical switches by 45.3%, the number of ping-pong times by 52.27%, and the throughput by about 5.84% compared to traditional algorithms. This algorithm can significantly reduce switching and ping-pong times. Therefore, this article provides a theoretical basis for the study of indoor heterogeneous network communication.