基于语义指导和自适应卷积的遥感云检测算法
DOI:
CSTR:
作者:
作者单位:

四川大学电气工程学院 成都 610065

作者简介:

通讯作者:

中图分类号:

TP751.1

基金项目:

四川省重点研发计划项目(2020YFG0051)、校企合作项目(21H1445)资助


Cloud detection algorithm for remote sensing images based on semantic-guided and adaptive convolution
Author:
Affiliation:

College of Electrical Engineering, Sichuan University,Chengdu 610065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遥感卫星数据云检测分割是遥感影像处理中的重要环节,为了解决目前碎云薄云检测精度较低的问题,提出了一种采用基于高阶语义解码和自适应卷积编码的云检测方法。这种方法针对云团和碎云薄云之间的空间分布联系,提出了自适应卷积编码器来提取云团之间的关联信息。然后,使用高阶语义指导模块来解码语义特征,指导高分辨率的云掩码图生成。此外,这种方法还设计了一种动态联合损失函数,该损失函数通过动态计算样本中的漏检误检像素来构建权重,以引导神经网络关注碎云薄云特征,从而提高整体精度。实验结果表明,提出的算法在遥感图像上云分割能力可以达到965%的精确度和881%的交并比,可以很好地检测碎云薄云。

    Abstract:

    Cloud detection of remote sensing satellite data is a crucial component in the processing of remote sensing images. To address the issue of low accuracy in detecting broken-clouds and thin-clouds, this paper proposes a novel cloud detection method that utilizes high-order semantic-guided decoding and adaptive convolutional encoding. The method leverages the spatial distribution relationship between the main cloud and broken-clouds by introducing an adaptive convolutional encoder to extract correlation information between the main cloud clusters. A high-order semantic-guided decoding module is then utilized to decode semantic features, thus restoring high-resolution cloud mask images. Moreover, a dynamic fusion loss function is designed to calculate the weight by dynamically computing the missed and wrong pixels in the prediction, guiding the network to focus on broken-clouds and thin-clouds, features, thereby enhancing the overall accuracy. Experimental results demonstrate that the proposed algorithm achieves an accuracy of over 96.5% and an intersection over union of over 88.1%, effectively detecting broken-clouds and thin-clouds.

    参考文献
    相似文献
    引证文献
引用本文

徐梓川,龚晓峰.基于语义指导和自适应卷积的遥感云检测算法[J].电子测量技术,2024,47(1):136-143

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-24
  • 出版日期:
文章二维码