基于改进YOLOv5的轨道交通障碍物检测算法
DOI:
CSTR:
作者:
作者单位:

兰州交通大学机电技术研究所 兰州 730070

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(72061021)项目资助


Rail transit obstacle detection algorithm based on improved YOLOv5
Author:
Affiliation:

Institute of Mechanical and Electrical Technology, Lanzhou Jiaotong University,Lanzhou 730070, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂的轨道交通背景下障碍物检测精度低和检测速度慢的问题,提出了一种改进YOLOv5的目标检测网络模型。首先,采用基于注意力机制的轻量级Transformer主干EMO来替换YOLOv5原有backbone中的部分模块,保证轻量化的同时,还能够提高模型的准确性和稳定性;其次,使用Focal-EIoU来替换YOLOv5中的CIoU损失函数,以解决CIoU引起的训练效率低、收敛速度慢等问题;最后使用轻量化上采样算子CARAFE来替换YOLOv5算法中原有的上采样层,在没有引入过多参数和计算量的情况下具有更大的感受野,提高了检测精度和检测速度。实验结果表明,该方法相较于原始的YOLOv5网络模型平均精确度提升了11.1%,准确率提升了13%,召回率提升了11.4%,检测速度达到了60.7 fps。所提出的方法在目标检测任务中表现出了较好的性能,有效增强了轨道交通背景下目标检测模型的检测性能。

    Abstract:

    In order to solve the problems of low accuracy and slow detection speed of obstacle detection in the complex rail transit background, an improved object detection network model of YOLOv5 was proposed. Firstly, a lightweight Transformer backbone EMO based on attention mechanism was used to replace some modules in the original backbone of YOLOv5, which not only ensured the lightweight, but also improved the accuracy and stability of the model. Secondly, Focal-EIoU is used to replace the CIoU loss function in YOLOv5 to solve the problems of low training efficiency and slow convergence speed caused by CIoU. Finally, the lightweight upsampling operator CARAFE is used to replace the original upsampling layer in the YOLOv5 algorithm, which has a larger receptive field without introducing too many parameters and computational cost, and improves the detection accuracy and detection speed. Experimental results show that compared with the original YOLOv5 network model, the mean average precision of the proposed method is improved by 11.1%, the precision is improved by 13%, the recall is improved by 11.4%, and the detection speed reaches 60.7 frames per second. The proposed method shows good performance in the target detection task, and effectively enhances the detection performance of the target detection model in the context of rail transit.

    参考文献
    相似文献
    引证文献
引用本文

赵鸿亮,郭佑民,王建鑫,杨君.基于改进YOLOv5的轨道交通障碍物检测算法[J].电子测量技术,2024,47(1):130-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-24
  • 出版日期:
文章二维码