多级解码神经网络用于滚珠丝杠点蚀检测
DOI:
CSTR:
作者:
作者单位:

1.沈阳化工大学装备可靠性研究所 沈阳 110142; 2.沈阳化工大学机械与动力工程学院 沈阳 110142

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(52275156)、辽宁省重点(一般)项目教育部(LJKZ0435)项目资助


Multi-level decoding neural network for pitting detection of ball screw
Author:
Affiliation:

1.Equipment Reliability Institute, Shenyang University of Chemical Technology,Shenyang 110142, China; 2.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology,Shenyang 110142, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于滚珠丝杠点蚀区域小,环境干扰严重,缺陷难以及时检测。所以提出了一种多级解码神经网络,实现滚珠丝杠点蚀缺陷的分割。该网络由编码器、多级解码器和多尺度注意力模块组成。编码器由Resnet34组成,并引入Ghost模块构建了轻量化的多级解码器。为了融合多尺度特征并过滤冗余信息,设计了多尺度注意力模块。采用二值交叉熵函数,IOU和SSIM函数组成的混合损失函数训练网络。在滚珠丝杠缺陷数据集上做了实验,多级解码神经网络在maxFβ指标上达到了0.770 3,与其他方法相比,该网络取得了更好的分割结果,并且单张图片处理时间为26 ms。为滚珠丝杠点蚀缺陷实时分割提供了一种新的方法。

    Abstract:

    Due to the small pitting area of the ball screw and the serious environmental interference, defects are difficult to detect in time. Therefore, a Multi-level decoding neural network is proposed to realize the segmentation of pitting defects in ball screws. The network consists of an encoder, a multi-level decoder and a Multi-scale Attention module. The encoder is composed of Resnet34, and the Ghost module is introduced to build a lightweight multi-level decoder. In order to fuse multi-scale features and filter redundant information, the Multi-scale Attention module is designed. A hybrid loss function composed of BCE function, IOU and SSIM function is used to train the network. Experiments on the ball screw defect dataset show that Multi-level decoding neural network achieves 0.770 3 in the maxFβ metrics, compared with other methods, which achieves better segmentation results, and the processing time of a single image is 26 ms. It provides a new method for real-time segmentation of ball screw pitting defects.

    参考文献
    相似文献
    引证文献
引用本文

赵慧锋,李铁军.多级解码神经网络用于滚珠丝杠点蚀检测[J].电子测量技术,2024,47(1):125-129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-24
  • 出版日期:
文章二维码