基于门控循环深度范围预测网络的多视角重建
DOI:
CSTR:
作者:
作者单位:

沈阳理工大学自动化与电气工程学院 沈阳 110159

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

辽宁省自然科学基金(2022-KF-14-02)、国家重点研发计划(2017YFC0821001-2)、辽宁省教育厅面上项目(LJKMZ20220617)资助


Multi-view stereo reconstruction based on gated recurrent deep range prediction network
Author:
Affiliation:

School of Automation and Electrical Engineering, Shenyang University of Technology,Shenyang 110159, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对三维重建技术难以处理高分辨率图像、重建后的点云图精度低、边界模糊的问题,本文提出基于门控循环单元的多阶段多尺度动态深度范围预测网络模型。首先,利用曲率引导的动态尺度卷积网络作为特征提取模块,通过计算图像上多个尺度的表面法曲率,得到图像最优像素的特征信息;然后,将精细的特征信息与一种新的深度范围估计模块相结合,动态估计下阶段的深度范围假设,从而更好的合并邻域像素的信息,实现参考图像和源图像之间的精确匹配。本文网络与其他10多种方法进行了比较,在DTU数据集上,整体性能比第2的网络提高2.2%。在Tank&Temple数据集上,Lighthouse、M60和Panther等场景的重建表现都有大幅提升。同时,本文进行了对比和消融实验,实验结果证明本文提出的动态深度预测网络,减小内存消耗的同时,显著提高了重建后点云图的精度和完整度。

    Abstract:

    Aiming at the problems that 3D reconstruction techniques are difficult to deal with high-resolution images, and the reconstructed point cloud maps have low accuracy and fuzzy boundaries, this paper proposes a multi-stage multi-scale dynamic depth range prediction network model based on gated recurrent units. First, a curvature-guided dynamic scale convolutional network is used as a feature extraction module to obtain the feature information of the optimal pixels of the image by calculating the surface normal curvature at multiple scales on the image; then, the fine feature information is combined with a new depth range estimation module to dynamically estimate the depth range assumptions of the next stage, so as to better merge the information of neighboring pixels, and to achieve an accurate matching between the reference image and the source image. The network in this paper is compared with more than 10 other methods, and on the DTU dataset, the overall performance is improved by 2.2% over the network in 2nd. On the Tank&Temple dataset, the reconstruction performance of the Lighthouse, M60 and Panther scenes are substantially improved. Meanwhile, comparison and ablation experiments are conducted in this paper, and the experimental results demonstrate that the dynamic depth prediction network proposed in this paper significantly improves the accuracy and completeness of the reconstructed point cloud maps while reducing the memory consumption.

    参考文献
    相似文献
    引证文献
引用本文

高宇,朱立忠,刘韵婷,刘晓玉.基于门控循环深度范围预测网络的多视角重建[J].电子测量技术,2024,47(1):118-124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-24
  • 出版日期:
文章二维码