基于改进U-Net的轻量级眼底病变分割算法设计
DOI:
CSTR:
作者:
作者单位:

1.中南林业科技大学计算机与信息工程学院 长沙 410004; 2.中南林业科技大学智慧林业云研究中心 长沙 410004

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:


Design of lightweight fundus lesion segmentation algorithm based on improved U-Net
Author:
Affiliation:

1.Central South University of Forestry and Technology, College of Computer and Information Engineering, Changsha 410004, China; 2.Smart Forestry Cloud Research Center of Central South University of Forestry and Technology,Changsha 410004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精准的糖尿病视网膜病变的分割是实现视网膜病变自动诊断的前提条件和关键步骤,然而现有大部分的分割模型存在着参数量大、模型训练效果不理想、甚至是无法正常处理数据集等局限性。为此,在原U-Net网络中加入改进的Ghost卷积模块与多尺度特征融合模块,提出一种改进U-Net眼底病变分割图像的算法。该模型能以少量的参数量、较低的计算复杂度获得良好的分割结果。利用Ghost Model替换原始卷积,设计出Ghost卷积与Ghost下采样卷积模块,在保证准确度的同时降低参数量;设计出一种轻量级的Half-UNet多尺度特征融合模块来获取多尺度信息,针对不同尺度病变目标,引入CBAM注意力机制以改善其适应性,从而更好的提取细小的病变信息。改进后的模型在e_optha与IDRiD两个公开数据集上的mIoU分别为61.42%、61.84%,F1-Score分别为70.59%、69.41%。模型参数量、FLOPs分别仅为5.48 M、35.46 GMac,较U-Net、Att-UNet等模型更加精简,分割精度更高。

    Abstract:

    Accurate segmentation of diabetes retinopathy is the prerequisite and key step to achieve automatic diagnosis of retinopathy. However, most of the existing segmentation models have limitations such as large parameters, unsatisfactory model training effect, and even inability to process data sets normally. To this end, an improved Ghost convolution module and multi-scale feature fusion module are added to the original U-Net network, and an improved U-Net algorithm for fundus lesion segmentation images is proposed. This model can achieve good segmentation results with a small number of parameters and low computational complexity. Using the Ghost Model to replace the original convolution, design Ghost convolution and Ghost down sampling convolution modules to ensure accuracy while reducing the number of parameters; Design a lightweight Half U-Net multi-scale feature fusion module to obtain multi-scale information, and introduce CBAM attention mechanism to improve its adaptability for different scale lesion targets, thereby better extracting small lesion information. The improved model is implemented in the mIoU on the two publicly available datasets, e_optha and IDRiD, were 61.42% and 61.84% respectively, while the F1 Score was 70.59% and 69.41%, respectively. The model parameters and FLOPs are only 5.48 M and 35.46 GMac, respectively, which are more streamlined and have higher segmentation accuracy compared to U-Net, Att-UNet and other models.

    参考文献
    相似文献
    引证文献
引用本文

刘拥民,张毅,欧阳凌轩,石婷婷.基于改进U-Net的轻量级眼底病变分割算法设计[J].电子测量技术,2024,47(3):127-134

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码