改进 ORB 提取匹配算法的 SLAM 应用研究
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院 南京 210044; 2.南京信息工程大学软件学院 南京 210044; 3.南京信息工程大学无锡研究院 无锡 214000

作者简介:

通讯作者:

中图分类号:

TP391.9

基金项目:

江苏省重点研发计划(BE2021622)、江苏省研究生实践创新计划(SJCX23_0395)项目资助


Research on SLAM application with improved ORB extraction and matching algorithms
Author:
Affiliation:

1.College of Automation, Nanjing University of Information Science and Technology,Nanjing 210044, China; 2.College of Software, Nanjing University of Information Science and Technology,Nanjing 210044, China; 3.Wuxi Research Institute of Nanjing University of Information Science and Technology,Wuxi 214000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于传统的ORB特征点提取匹配方法在图像纹理信息不丰富或者光照变化剧烈时极易产生特征点丢失、分布不均等问题,不利于SLAM系统的定位与建图。为此本文提出了一套较为鲁棒、精度较高的提取匹配算法。首先基于ORB特征点对其提取算法进行改进,计算自适应阈值并基于网格模型提取特征点,可提高特征点提取的鲁棒性并使其分布均匀。此外还提出了G-R图像匹配算法,基于网格特征计算邻域支持估计量来区分正误匹配点,再结合引入评价函数的RANSAC算法进一步剔除误匹配点,相比ORB-SLAM2原始匹配算法提高匹配精度9.36%,并减少时间消耗约13.6%。最后将本文提出的特征点提取匹配算法加入到ORB-SLAM2算法框架,经数据集与实际场景验证本文方法能有效提高ORB-SLAM2系统定位精度36.6%以上,使系统更具鲁棒性。

    Abstract:

    As the traditional ORB feature point extraction and matching method is not rich in image texture information or when the lighting changes drastically, it is very easy to produce feature point loss, uneven distribution and other problems, which is not conducive to the location and construction of the SLAM system. In this paper, a set of more robust and higher accuracy extraction matching algorithm is proposed. Firstly, the extraction algorithm is improved based on the ORB feature points, the adaptive threshold is calculated and the feature points are extracted based on the grid model, which can improve the robustness of feature point extraction and make its distribution uniform. In addition, the G-R image matching algorithm is also proposed, which calculates the neighborhood support estimator based on grid features to distinguish between positive and incorrect matches, and then combines with the RANSAC algorithm that introduces the evaluation function to further eliminate incorrect matches, which improves the matching accuracy by 9.36% compared with the original matching algorithm of ORB-SLAM2, and reduces the time consumption by about 13.6%. Finally, the feature point extraction matching algorithm proposed in this paper is added to the ORB-SLAM2 algorithm framework, which is verified by the dataset and the actual scene that the method in this paper can effectively improve the positioning accuracy of the ORB-SLAM2 system by more than 36.6% and make the system more robust.

    参考文献
    相似文献
    引证文献
引用本文

张钧程,柯福阳,王旭.改进 ORB 提取匹配算法的 SLAM 应用研究[J].电子测量技术,2024,47(3):91-101

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码