基于深度学习的电力杆塔缺陷检测
DOI:
CSTR:
作者:
作者单位:

1.国网江苏省电力有限公司常州供电分公司 常州 213000; 2.河海大学信息科学与工程学院 常州 213000

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:

国网江苏省电力有限公司孵化项目(JF2023012)资助


Deep learning-based transmission tower defect detection
Author:
Affiliation:

1.State Grid Changzhou Power Supply Company, Changzhou 213000, China; 2.College of Information Science and Engineering, Hohai University, Changzhou 213000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前无人机电力杆塔巡检过程中航拍图像背景复杂、杆塔组件尺寸差异大、缺陷种类多导致的巡检效率低和缺陷漏检率高等问题,本文提出一种动态位置查询引导的多尺度实例分割方法和基于图特征记忆的缺陷检测方法。所提实例分割方法通过提取多尺度航拍图像特征,选择特征中具有最高关注度分数的低分辨率像素,将其映射到高分辨率特征的相应位置,并添加边界框检测器以提高电力杆塔的分割精度。在缺陷检测算法中提出可学习的图特征描述符,构建了一个记忆库来提取关键元素,以获得更准确的样本特征,提高缺陷检测效率。本文方法在自建的两个缺陷检测数据集上与其他先进算法进行对比,实例分割box_AP和mask_AP相较于Mask2Former分别提升了7.6%和0.5%,缺陷检测算法AUROC分别比次优算法提高7.3%和1.6%,F1.Score分别比次优算法提高6.7%和6.9%,充分表明了本文算法出色的电力杆塔缺陷检测性能。

    Abstract:

    In response to low efficiency and high leakage rate caused by different sizes of transmission tower components and more defects in the current defect detection of power line towers, this paper proposes a Dynamic Position Query-Guided Multi-Scale Instance Segmentation method and a Graph Feature Memory-based Defect Detection method. The proposed instance segmentation method extracts multi-scale aerial image features, selects low-resolution pixels with the highest attention scores from the features, maps them to the corresponding positions in high-resolution features, and incorporates a bounding box detector to enhance the segmentation accuracy of power transmission towers. In the defect detection algorithm, a learnable graph feature descriptor is introduced, a memory bank is constructed to extract key elements for more accurate sample feature extraction, thereby improving defect detection efficiency. The power transmission tower defect detection method presented in this paper is compared with other state-of-the-art algorithms on two self-constructed defect detection datasets, the box_APand mask_AP of instance segmentation saw significant improvements of 7.6% and 0.5%, respectively, compared to Mask2Former. The AUROC indicator of defect algorithm was 7.3% and 1.6% higher than the second-best algorithm for the two datasets, and the F1-Score was improved by 6.7% and 6.9%, respectively. These results strongly demonstrate the outstanding performance of our algorithm in the transmission tower defect detection.

    参考文献
    相似文献
    引证文献
引用本文

张关应,束云豪,常宸铠,候姝斌,李庆武.基于深度学习的电力杆塔缺陷检测[J].电子测量技术,2024,47(3):116-126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码