基于BP神经网络算法的粉碎机自适应控制系统设计
DOI:
CSTR:
作者:
作者单位:

1.内蒙古科技大学工程训练中心 包头 014010; 2.内蒙古科技大学机械工程学院 包头 014010

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

内蒙古自治区自然科学基金(2021MS05065,2022MS05030)、内蒙古自治区高等学校青年科技英才支持计划(NJYT23046)、内蒙古科技大学基本科研业务费专项资金(2023QNJS068)资助


Design of adaptive control system for hammer mill based on BP network algorithm
Author:
Affiliation:

1.Engineering Training Center, Inner Mongolia University of Science and Technology, Baotou 014010,China; 2.College of Mechanical Engineering, Inner Mongolia University of Science and Technology,Baotou 014010,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对饲料加工行业中锤片式粉碎机控制系统存在启动时间长、响应速度慢及负载变化时出现的稳定性差等问题,提出了一种基于BP神经网络算法PID控制方法。首先,建立变频器和饲料粉碎机驱动电机组合系统传递函数的参考模型,并对其进行稳定性分析。然后在分析常规PID和模糊PID控制算法的基础上,将自适应神经网络算法PID应用到饲料粉碎机驱动系统的控制过程当中。通过搭建饲料粉碎机控制电机的仿真模型,利用MATLAB软件中的Simulink图形化编程功能对其进行仿真分析,并基于LABVIEW软件搭建了粉碎机测控系统试验平台进行实验测试分析。结果表明:对于饲料粉碎系统所给定的速度参考模型,设计的BP神经网络PID控制器能够实现较好的自适应追踪,对阶跃信号的响应更加迅速、超调更小,抗干扰能力更强。设计的自适应控制器能够根据工况变化自动调节PID参数,吨料电耗平均降低5.16%、生产率平均提高2.08%,对粉碎机主轴转速的控制更加精确,误差更小,兼具了较高的控制精度和较强的鲁棒性,满足饲料粉碎机驱动系统的自适应控制要求。

    Abstract:

    Aiming at the problems of long start-up time, slow response speed and poor stability when the load changes in the hammer mill control system in the feed processing industry. A PID control method based on BP neural network algorithm is proposed. Firstly, establishing the reference model of the transfer function of the combined system of the frequency converter and the hammer mill drive motor and analyzing its stability. Then, based on the analysis of conventional PID and fuzzy PID control algorithms, the adaptive neural network algorithm PID is applied to the control process of the hammer mill drive system. By building a simulation model for the control motor of the hammer mill and it is simulated and analyzed by the Simulink graphical programming function. And based on LABVIEW software, a testing platform for the hammer mill measurement and control system was built for experimental testing and analysis.The results show that the designed BP neural network PID controller can achieve good adaptive tracking for the speed reference model given by the feed crushing system, with faster response to step signals, smaller overshoot, and stronger anti-interference ability. The designed adaptive controller can automatically adjust PID parameters according to changes in working conditions, resulting in an average reduction of 5.16% in electricity consumption per ton of material and an average increase of 2.08% in productivity, The control of the spindle speed of the hammer mill is more precise, with smaller errors, and has high control accuracy and strong robustness, meeting the adaptive control requirements of the feed hammer mill drive system.

    参考文献
    相似文献
    引证文献
引用本文

李春东,张上旺,汪飞,曹丽英,王亮.基于BP神经网络算法的粉碎机自适应控制系统设计[J].电子测量技术,2024,47(4):188-194

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-15
  • 出版日期:
文章二维码