非线性递减权值PSO优化下的LQR轨迹跟踪研究
DOI:
CSTR:
作者:
作者单位:

1.西南交通大学唐山研究院 唐山 063000; 2.西南交通大学机械工程学院 成都 610036

作者简介:

通讯作者:

中图分类号:

TP273+.1

基金项目:


Research on LQR trajectory tracking under nonlinear decreasing weight PSO optimization
Author:
Affiliation:

1.Graduate School of Tangshan, Southwest Jiaotong University,Tangshan 063000, China; 2.School of Mechanical Engineering, Southwest Jiaotong University,Chengdu 610036, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对二次线性调节器(LQR)权重矩阵选取困难导致的自动驾驶车辆控制精度低、系统适应度欠佳等问题,设计了一种非线性递减权值粒子群算法(NLDW-PSO)。基于二自由度车辆动力学模型,构建了横向跟踪误差模型,设计了前馈控制消除了LQR稳态误差;并设计以横向偏差、航向偏差和前轮转向角为评价函数,将系统输出误差状态量反馈至NLDW-PSO算法,所设计的非线性递减惯性权重因子通过提升粒子群体寻优性能,从而自适应调整LQR权重系数更新策略,形成闭环优化控制,最终求解得到系统目标函数极值。将所设计控制器的跟踪效果进行了对比,Carsim/Smulink联合仿真结果表明所提出NLDW-PSO优化LQR算法的跟踪控制效果最优,横向距离偏差最大值为0.076 m,横向距离偏差均值相较于固定权重系数LQR降低了69.74%,显著提高了车辆跟踪控制精度和自适应能力,且对速度变化具有较强鲁棒性。

    Abstract:

    In order to solve the problems of low control accuracy and poor system fitness caused by the difficulty of selecting the weight matrix of quadratic linear regulator (LQR),this paper was designed a nonlinear decreasing weight particle swarm optimization (NLDW-PSO) algorithm. Based on the two-degree-of-freedom vehicle dynamics model, the lateral tracking error model is constructed, and the LQR steady-state error is eliminated by feedforward control. With lateral deviation, heading deviation and front wheel steering angle as evaluation functions, the system output error state is fed back to NLDW-PSO algorithm, The designed nonlinear decreasing inertia weight factor can improve the particle population optimization performance, which adaptively adjusts the LQR weight coefficient update strategy to form a closed-loop optimization control, and finally obtains the extreme value of objective function of the system. The tracking effect of the designed controllers is compared, the results showed that the proposed NLDW-PSO optimized LQR algorithm has the best tracking control effect, and it′s maximum Lateral error was 0.076m by Carsim/Smulink co-simulation, and the mean Lateral error was reduced by 69.74% compared with the fixed weight coefficient LQR. The tracking control accuracy and adaptive ability of the vehicle are significantly improved, and it has strong robustness to velocity change.

    参考文献
    相似文献
    引证文献
引用本文

董蓉,刘放,聂少卿,刘亚飞,吴宝宁.非线性递减权值PSO优化下的LQR轨迹跟踪研究[J].电子测量技术,2024,47(4):44-50

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-15
  • 出版日期:
文章二维码