基于双目视觉的拖车钩检测与定位方法研究
DOI:
CSTR:
作者:
作者单位:

华北电力大学自动化系 保定 071003

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金面上项目(62373151)、国家自然科学基金联合项目(U21A20486)、中央高校基本科研业务费项目(2023JC006)、河北省自然科学基金(F2020502009,F2021502008)项目资助


Research on tow hook detection and location method based on binocular vision
Author:
Affiliation:

Department of Automation, North China Electric Power University,Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在某些危险环境下需要拖车实施救援时,救援人员难以靠近,救援人员可以通过遥控操作拖车杠来完成拖车钩的挂装。针对被救援车辆拖车钩的检测与定位问题,提出了一种拖车钩检测与定位方法ECSAYOLOv5,首先改进YOLOv5算法,设计了高效注意力模块ECSA,将其替换掉空间金字塔池化模块上一层的模块,并增加一个大小为160×160的小目标检测层,能够更准确的获得拖车钩在图像中的像素坐标;通过在SGBM立体匹配算法预处理阶段加入引导滤波、后处理阶段引入加权最小二乘法WLS滤波与异常值处理,从而获得更优化的视差图,得到更为准确的目标深度信息,提高拖车钩位置信息计算的精确度。基于Jetson Agx Xavier开发板进行了实验验证,实验结果表明,ECSA-YOLOv5模型较YOLOv5s模型AP值提升了5.8%,达到了99.0%,平均实时检测帧率为14 fps,定位测距在3 m内时,误差在3.5%以下,能够满足拖车钩的检测与定位的准确性和实时性的要求。

    Abstract:

    When towing for rescue in certain hazardous environments, it is difficult for rescue personnel to approach. Rescue personnel can use remote control to operate the trailer bar to complete the installation of the trailer hook. This paper proposes a trailer hook detection and positioning method ECSA-YOLOv5 for rescue vehicles. Firstly, the YOLOv5 algorithm is improved by designing an efficient attention module ECSA, which replaces the module on the previous layer of the spatial pyramid pooling module. Additionally, a small object detection layer of 160×160 is added to obtain the pixel coordinates of the trailer hook in the image more accurately; By incorporating guided filtering in the preprocessing stage of the SGBM stereo matching algorithm and introducing weighted least squares (WLS) filtering and outlier handling in the post-processing stage, a more optimized disparity map can be obtained, resulting in more accurate target depth information and improving the accuracy of trailer hook position information calculation. Experimental verification was conducted based on the Jetson Agx Xavier development board, and the results showed that the ECSA-YOLOv5 model improved the AP value by 5.8% compared to the YOLOv5s model, reaching 99.0%. The average realtime detection frame rate was 14 fps, and when the positioning distance was within 3 meters, the error was below 3.5%, which can meet the accuracy and real-time requirements of trailer hook detection and positioning.

    参考文献
    相似文献
    引证文献
引用本文

李冰,王豪伟,韩宇辰,胡钧涛,翟永杰.基于双目视觉的拖车钩检测与定位方法研究[J].电子测量技术,2024,47(3):1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码