基于强化学习的多段连续体机器人轨迹规划
DOI:
CSTR:
作者:
作者单位:

1.四川大学电气工程学院 成都 610065; 2.清华大学自动化系 北京 100084

作者简介:

通讯作者:

中图分类号:

TP242;TP399

基金项目:

清华大学横向协作项目(HG2020153)资助


Trajectory planning of multi-stage continuum robot based on reinforcement learning
Author:
Affiliation:

1.College of Electrical Engineering, Sichuan University,Chengdu 610065, China; 2.Department of Automation, Tsinghua University,Beijing 100084, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多段连续体机器人的轨迹规划问题,提出了一种基于深度确定性策略梯度强化学习的轨迹规划算法。首先,基于分段常曲率假设方法,建立连续体机器人的关节角速度和末端位姿的正向运动学模型。然后,采用强化学习算法,将机械臂的当前位姿和目标位姿等信息作为状态输入,将机械臂的关节角速度作为智能体的输出动作,设置合理的奖励函数,引导机器人从初始位姿向目标位姿移动。最后,在MATLAB中搭建仿真系统,仿真结果表明,强化学习算法成功对多段连续体机器人进行轨迹规划,控制连续体机器人的末端平稳运动到目标位姿。

    Abstract:

    For the trajectory planning of multi-stage continuum robots, a trajectory planning algorithm based on deep deterministic policy gradient reinforcement learning is proposed. Firstly, based on the piecewise constant curvature hypothesis, the forward velocity kinematic model of joint angular velocity and end pose of the continuum robot is established. Then, the reinforcement learning algorithm is used to take the current pose and target pose of the robot arm as state input, the joint angular velocity of the robot arm as the output action of the agent, and a reasonable reward function is set to guide the robot to move from the initial pose to the target pose. Finally, a simulation system is built in MATLAB, and the simulation results show that the reinforcement learning algorithm successfully performs trajectory planning for the multi-segment continuum robot and controls the end of the continuum robot to move smoothly to the target pose.

    参考文献
    相似文献
    引证文献
引用本文

刘宜成,杨迦凌,梁斌,陈章.基于强化学习的多段连续体机器人轨迹规划[J].电子测量技术,2024,47(5):61-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-05
  • 出版日期:
文章二维码