基于CS-YOLOv5s的无人机航拍图像小目标检测
DOI:
CSTR:
作者:
作者单位:

1.西南交通大学物理科学与技术学院 成都 610031; 2.西南交通大学信息科学与技术学院 成都 610031

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:


Small target detection for UAV aerial images based on CS-YOLOv5s
Author:
Affiliation:

1.School of Physical Science and Technology, Southwest Jiaotong University,Chengdu 610031, China; 2.School of Information Science and Technology, Southwest Jiaotong University,Chengdu 610031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机航拍图像存在小目标分布密集且目标尺度变化大等检测难点,本文提出一种面向无人机航拍图像小目标的跨尺度目标检测模型—CS-YOLOv5s。首先,在YOLOv5s基础上,引入小目标检测器,提高模型对小目标的捕捉能力;进一步,将最大池化分支嵌入上下文增强模块,提取并增强骨干网络尾部的深层特征,再注入PANet,实现深浅层特征有效融合和模型跨尺度检测能力的提升;同时采用SPDConv模块替换下采样卷积模块,实现无人机航拍图像中密集目标高效检测。实验表明,CS-YOLOv5s在数据集VisDrone2019达到42.0% mAP0.5,较基准模型提升9.8%,有效增强网络模型对无人机航拍图像小目标的识别能力,为无人机目标智能识别提供支撑。

    Abstract:

    To address the challenges in detecting small targets with dense distribution and large-scale variations in UAV aerial images, a cross-scale target detection model for UAV aerial images, named CS-YOLOv5s, is proposed. Firstly, based on YOLOv5s, micro-object detector is utilized to improve the model ability for capturing small targets. Then, the max-pooling branch is embedded into the context augment model, extracting and enhancing deep feature maps at the tail of the backbone network. The PANet is injected to achieve effective fusion of deep and shallow features with enhancing the cross-scale detection capability. Furthermore, the down-sampling convolution module is replaced with the SPDConv module to achieve efficient detection of dense objects in UAV aerial images. Experiments demonstrate that CS-YOLOv5s achieves 42.0% mAP0.5 on the VisDrone2019 dataset, which is increased by 9.8% than that of the baseline model. Our model enhances the network ability to recognize small targets in UAV aerial images effectively, which provides a new way for intelligent targets recognition of UAV.

    参考文献
    相似文献
    引证文献
引用本文

翁俊辉,成乐,黄曼莉,隋皓,朱宏娜.基于CS-YOLOv5s的无人机航拍图像小目标检测[J].电子测量技术,2024,47(7):157-162

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-10
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知