基于细节信息增强的无监督双目立体匹配算法
DOI:
CSTR:
作者:
作者单位:

1.重庆科技大学数理与大数据学院 重庆 401331; 2.重庆科技大学电气工程学院 重庆 401331

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0398,CSTB2022NSCQ-MSX1425)资助


Unsupervised stereo matching algorithm of binocular based on detail information enhancement
Author:
Affiliation:

1.College of Mathematics, Science and Big Data, Chongqing University of Science and Technology,Chongqing 401331, China; 2.College of Electrical Engineering, Chongqing University of Science and Technology,Chongqing 401331, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无监督立体匹配算法在自动驾驶等领域有重要的应用,然而无监督立体匹配算法在物体连续、边缘等细节信息区域的视差精度较低,本文提出了一种提高细节信息区域精度的无监督立体匹配算法。通过在特征金字塔网络中引入空间注意力机制和残差网络,设计了一种空间特征金字塔网络算法,抑制特征提取过程中边缘和小目标细节信息的丢失。构建了视差融合模块,将半全局立体匹配算法生成的原始视差和视差回归生成的初步视差进行置信度视差融合,提升连续细节信息区域的精度。对于网络损失函数,集成了原始视差监督损失和置信度遮挡损失,保留更多图像边缘和连续区域处的细节信息。实验结果表明,本文算法在KITTI 2015测试集中非遮挡区域和所有区域的误匹配率分别为6.24%和5.89%,与其他经典算法相比在细节信息区域的效果、精度方面有较大提升。

    Abstract:

    Unsupervised stereo matching algorithms have important applications in areas such as autonomous driving, however, unsupervised stereo matching algorithms have low disparity accuracy in the region of object continuity, edges and other detail information, this paper proposes a new unsupervised stereo matching algorithm to improve the accuracy of detail information region by combining spatial attention mechanism and parallax fusion. Specifically, the spatial feature pyramid network is designed by introducing a spatial attention mechanism and residual structure into the feature pyramid network, to suppress the loss of edge and small target details in the process of feature extraction. Further, a disparity fusion module is constructed to improve the accuracy of the continuous detail information region, where the original disparity generated by the semi-global block matching algorithm and the initial disparity generated by disparity regression are fused with confidence disparity. Moreover, For the network loss function, the original disparity supervised loss and confidence masking loss are integrated to retain more detailed information at image edges and continuous regions. Finally, the experimental results show that the mis-matching rate of the proposed algorithm in the non-occluded region and all regions in the KITTI 2015 test set are 6.24% and 5.89%, respectively, which greatly improves the effect and accuracy of the detailed information region compared with other classical algorithms.

    参考文献
    相似文献
    引证文献
引用本文

王晓峰,孙志恒,喻骏,孙贾梦,丁坤岭,舒航.基于细节信息增强的无监督双目立体匹配算法[J].电子测量技术,2024,47(5):94-101

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-05
  • 出版日期:
文章二维码