Abstract:To address the issue of low accuracy in indoor static target positioning with existing single-antenna ultra-high frequency RFID technology, this paper proposes a new RFID localization method based on an antenna boresight signal propagation model. The method first determines the height position of the target through vertical antenna scanning; secondly, it adjusts the antenna height to match that of the target and then performs stepwise rotational scanning to identify the target′s azimuth angle; furthermore, it utilizes a Sparrow Search Algorithm optimized back propagation neural network to establish a path loss model for ranging purposes; finally, it integrates the height, azimuth angle, and distance data to complete the target positioning. Experimental results show that in indoor environment testing, the proposed method has an average positioning error of 7.2 cm, which meets the positioning requirements for items in general indoor scenarios.