基于改进YOLOv8n的轻量化茶叶嫩芽检测方法
DOI:
CSTR:
作者:
作者单位:

1.广西大学机械工程学院 南宁 530004; 2.梧州学院机械与资源工程学院 梧州 543002

作者简介:

通讯作者:

中图分类号:

TN919.8;TP391.46

基金项目:

广西创新驱动发展专项(AA18118002)、2022年梧州市科学研究与技术开发计划项目(202202064,202202039)资助


Research on lightweight tea sprout detection method based on improved YOLOv8n
Author:
Affiliation:

1.School of Mechanical Engineering, Guangxi University,Nanning 530004, China; 2.School of Mechanical and Resource Engineering, Wuzhou University,Wuzhou 543002,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决自然环境下茶叶嫩芽检测场景复杂,模型参数量大无法在嵌入式设备部署等问题,提出一种基于改进YOLOv8n的轻量化茶叶嫩芽检测方法。构建一种MFBNet轻量化骨干网络,引入MBConv模块后大大减少了模型计算量。同时在骨干网中加入CBAM注意力模块,抑制无效信息,提高了模型检测精度;其次引入AKConv模块对VoVGSCSPC结构进行改进,提出全新的AVCStem模块,并将其替换颈部网络的C2f模块,进一步减少模型参数,提升嵌入式设备部署效率;最后采用GSConv模块替换颈部网络结构中的全部Conv模块,帮助模型进行快速计算,提高茶叶嫩芽的检测速率。结果表明,本文提出的模型比YOLOv8n原模型的mAP50和FPS分别提升了3.5%、55.6%,参数量减少了14.3%,且模型鲁棒性强,满足复杂场景下茶叶嫩芽的轻量化快速检测。

    Abstract:

    To solve the problems of complex tea bud detection scenarios in natural environments and the large number of model parameters that cannot be deployed on embedded devices, a lightweight tea bud detection method based on YOLOv8n is proposed. We construct a lightweight backbone network, MFBNet, introducing the MBConv module to significantly reduce model computation. Simultaneously, we incorporate the CBAM attention module into the backbone network to suppress irrelevant information, thereby enhancing the model′s detection accuracy. Furthermore, the introduction of the AKConv module improves the VoVGSCSPC structure, proposing the innovative AVCStem module, which replaces the C2f module in the neck network, further reducing model parameters and enhancing the efficiency of embedded device deployment. Finally, we employ the GSConv module to replace all Conv modules in the neck network structure, facilitating fast model computation and increasing the detection speed of tender tea buds. The results indicate that the proposed model in this paper outperforms the original YOLOv8n model with a 3.5% improvement in mAP50, 55.6% increase in FPS, and a 14.3% reduction in parameters. The model demonstrates strong robustness, meeting the requirements for lightweight and rapid detection of tender tea buds in complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文

潘海鸿,陈希良,钱广坤,申毅莉,陈琳.基于改进YOLOv8n的轻量化茶叶嫩芽检测方法[J].电子测量技术,2024,47(7):149-156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-10
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知