融合类间方差和概率误差的肺部图像分割
DOI:
CSTR:
作者:
作者单位:

1.南昌师范学院数学与信息科学学院 南昌 330032; 2.南昌市教育大数据智能技术重点实验室 南昌 330032

作者简介:

通讯作者:

中图分类号:

TP391;TN29

基金项目:

国家自然科学基金(62062038)、江西省教育厅科技项目(GJJ190833,GJJ212603,GJJ2202013)、南昌师范学院科研项目(21KJYB01)、南昌师范学院博士启动基金(NSBSJJ2020016)项目资助


Lung image segmentation based on interclass variance and probabilistic error
Author:
Affiliation:

1.School of Mathematics and Information Science, Nanchang Normal University,Nanchang 330032, China; 2.Nanchang Key Laboratory of Education Big Data Intelligent Technology,Nanchang 330032, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    X线胸片图像存对比度低、边界模糊等不足,严重影响了X线胸片图像的分割效果。为了利用X线胸片图像快速且准确地对肺部疾病进行诊断和治疗,本文提出了一种基于类间方差和概率误差的X线胸片肺部图像分割算法。该算法在对X线胸片图像预处理的基础上,首先利用X线胸片图像中的人体结构信息进行图像粗分割;然后对预处理图像分别计算目标类和背景类之间的类间方差和概率误差,并在无量纲化处理后,设计新的分割目标函数来计算最佳阈值,从而实现图像细分割;最后合并粗、细分割过程的分割结果,并进行优化,从而基于最佳阈值的图像分割。X线胸片图像的对比实验结果显示,本文算法的DSC和IOU指标分别为89.5%和81.1%,分割所得肺部区域在完整性和准确性上都有良好表现,表明本文算法是有效可行的,适合基于X线胸片图像的肺部图像分割。

    Abstract:

    The low contrast and blurred boundary of chest X-ray images seriously affect the segmentation effect of chest X-ray images. In order to diagnose and treat lung diseases quickly and accurately with chest X-ray images, this paper presents a method of chest X-ray lung image segmentation based on interclass variance and probabilistic error. Based on the pre-processing of chest X-ray images, the method firstly uses the information of human body structure in chest X-ray images for coarse image segmentation. Then, the interclass variances and probabilistic errors between the target class and the background class are calculated respectively for the preprocessed image, and a new segmentation objective function is designed to calculate the optimal threshold after non-dimension processing the interclass variances and probabilistic errors, so as to achieve the image accurate segmentation. Finally, the segmentation results of the coarse and fine segmentation processes are combined and optimized to achieve the image segmentation based on the optimal threshold. The comparative experimental results of chest X-ray images show that The DSC and IOU indicators of the proposed method are 89.5% and 81.1% respectively, and the segmentation of lung regions by the method has good performance in completeness and accuracy. This indicates that the method is effective and feasible, and is suitable for lung image segmentation based on chest X-ray images.

    参考文献
    相似文献
    引证文献
引用本文

李钢.融合类间方差和概率误差的肺部图像分割[J].电子测量技术,2024,47(8):164-170

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码