基于改进YOLOv8和无人机遥感影像的大田烟株数量检测
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院 昆明 650504; 2.云南省烟草农业科学研究院 昆明 650021

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

中国烟草总公司云南省公司科技计划项目(2021530000241025)、云南大学研究生科研创新基金(KC-23235266)项目资助


Detection of tobacco plant numbers in large fields based on improved YOLOv8 and UAV remote sensing imagery
Author:
Affiliation:

1.School of Information Science and Technology, Yunnan University,Kunming 650504, China; 2.Yunnan Academy of Tobacco Agriculture Science,Kunming 650021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    植株精确计数在精准化农业中至关重要,是监测作物生长和预测产量的重要基础。针对成熟期烟草植株存在的密植、重叠和高空小目标等难题,研究提出了一种轻量级 GEW-YOLOv8 烟株检测算法。该算法采用GhostC2f 模块减少了模型的参数和计算量,并应用高效的多尺度注意力机制来区分被遮挡的烟草植株。此外,还引入了 WIoU 损失函数,以加速模型收敛并提高准确性。实验结果表明,与原始模型相比,模型的效率和准确性有了显著提高,浮点运算次数减少了 24.7%,模型大小减少了 26.7%。改进后的模型烟草植株检测平均精度 AP0.5 和 AP0.5~0.95分别为 99.1%和 86.2%,相较于原YOLOv8n 模型分别提高了0.8% 和3.6%。改进后的模型能够更快、更精确地识别田间烟草植物,为智慧烟草农业提供技术支持。

    Abstract:

    Accurate plant counting is crucial in precision agriculture, forming a critical foundation for monitoring crop growth and predicting yield. To address challenges such as densely packed, overlapping, and aerial small targets of tobacco plants during the maturity stage, a lightweight GEW-YOLOv8 tobacco plant counting algorithm was proposed. The algorithm utilizes the GhostC2f module to reduce the parameters and computational workload of the model and employs an efficient multi-scale attention mechanism to discern occluded tobacco plants. Additionally, the WIoU loss function is introduced to accelerate model convergence and improve accuracy. Experimental results show a significant improvement in efficiency and accuracy compared to the original model, with a 24.7% reduction in FLOPs and a 26.7% decrease in model size. The improved model tobacco plant detection accuracy AP0.5 and AP0.5~0.95 reached 99.1% and 86.2% respectively, which were increased by 0.8% and 3.6% respectively compared with the original YOLOv8n model. The improved model can more swiftly and accurately identify field tobacco plants, providing technical support for intelligent tobacco agriculture.

    参考文献
    相似文献
    引证文献
引用本文

肖恒树,李军营,梁虹,马二登,张宏.基于改进YOLOv8和无人机遥感影像的大田烟株数量检测[J].电子测量技术,2024,47(9):163-171

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-04
  • 出版日期:
文章二维码