基于孤立森林评分扩展的流量异常检测方法
DOI:
CSTR:
作者:
作者单位:

上海大学通信与信息工程学院 上海 200444

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:


Traffic anomaly detection method based on iForest score extension
Author:
Affiliation:

School of Communication and Information Engineering, Shanghai University,Shanghai 200444, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    流量异常检测是一种有效识别网络攻击行为的技术。近年来,无监督方法在异常检测领域得到了广泛应用。针对现有流量数据间时序关系挖掘的需求与孤立森林随机选择特征属性进行样本划分的问题,本文提出一种基于孤立森林评分扩展的流量异常检测方法。首先,文章使用滑动窗口机制和信息熵特性,设计了网络流量的熵时序特征提取方法,集成至特征集执行显著特征筛选。然后,文章构建了孤立森林评分扩展模型,在节点样本划分时,利用特征集合迭代方法与特征重要性矩阵,综合集合中孤立树特征,为节点标记综合路径长度代替原路径长度,并计算更能表征样本分布的异常评分。最后,通过设定异常得分阈值判别样本是否异常。在公开数据集上的实验结果表明,文章提出的异常检测模型,相比其他方法有明显优势,具有良好的实时检测性能,误报率更低,可有效用于网络流量的异常检测中,对真实网络环境中攻击事件的识别具有重要意义。

    Abstract:

    Traffic anomaly detection is a technique used to identify network attacks effectively. In recent years, unsupervised methods have become prevalent in anomaly detection. Aiming at the demand of mining the temporal relationship between existing traffic data and the problem of randomly selecting feature attributes for sample division in iForest, this paper proposed a traffic anomaly detection method based on iForest score extension. Firstly, the paper used the sliding window mechanism and the information entropy property to design an entropic timeseries feature extraction method for network traffic, which was integrated into the feature set to perform significant feature screening. Secondly, the paper constructed an iForest score extension model that utilized the feature set iteration method with the feature importance matrix in the node sample division, integrated the isolated tree features in the set, marked the integrated path length between nodes instead of the original path length, and calculated the anomaly score that better characterized the sample distribution. Finally, by setting the anomaly score threshold, the paper discriminated whether the samples were abnormal. The experimental results on the public dataset show that the anomaly detection model proposed in the paper has obvious advantages over other methods, with good real-time detection performance and lower false alarm rate, which can be effectively used in the anomaly detection of network traffic, and is of great significance for the identification of attack events in real network activities.

    参考文献
    相似文献
    引证文献
引用本文

沈萍,陈俊丽.基于孤立森林评分扩展的流量异常检测方法[J].电子测量技术,2024,47(8):157-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码