KThin-YOLOV7:轻量级的焊接件表面缺陷检测
DOI:
CSTR:
作者:
作者单位:

江苏科技大学计算机学院 镇江 212100

作者简介:

通讯作者:

中图分类号:

TP183;TN249.2;TP391.41

基金项目:

国家自然科学基金(62276118)项目资助


KThin-YOLOV7: Lightweight inspection of surface defects on welded parts
Author:
Affiliation:

School of Computer Science, Jiangsu University of Science and Technology,Zhenjiang 212100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前市面主流焊接件表面缺陷的模型检测精度不高,模型复杂和不满足实时监测等问题,提出了一种基于YOLOV7-tiny改进得到的焊接件表面缺陷新型检测模型KThin-YOLOV7。首先,设计了基于模拟人类视觉感受野的EMA-BasicRFBC模块,更换YOLOV7-tiny模型的空间特征金字塔SPP模块,从而加强模型特征表达的性能。其次,以SlimNeck设计范式结构为基础设计了ThinNeck结构,并用其更换YOLOV7-tiny的NECK特征融合部分,减少模型的参数量和计算量的同时提高了模型的平均检测精度。最后,引入K-means++算法找出合适的锚框,并用FEIOU损失函数更换原模型的LOSS,进一步帮助模型优化目标框的位置和大小。KThin-YOLOV7相对原始YOLOV7-tiny模型的mAP提升了7.11%,达到87.64%,同时模型的参数量和计算量分别下降了11.14%和15.26%。实验结果表明,KThin-YOLOV7能够高效且准确地定位检测焊接件表面的缺陷。

    Abstract:

    Aiming at the current market mainstream weldment surface defects model detection accuracy is not high, the model is complex and does not meet the real-time monitoring and other issues, a new detection model of weldment surface defects based on the improvement of YOLOV7-tiny obtained KThin-YOLOV7 is proposed.Firstly, the EMA-BasicRFBC module, which is based on simulating the human visual sensory field, was designed to replace the spatial feature pyramid SPP module of the YOLOV7-tiny model, so as to enhance the performance of the model feature expression.Secondly, the ThinNeck structure is designed based on the SlimNeck design paradigm structure, and it is used to replace the NECK feature fusion part of YOLOV7-tiny, which reduces the number of parameters and computation of the model and improves the average detection accuracy of the model at the same time. Finally, the K-means++algorithm is introduced to find out the appropriate anchor frame and replace the LOSS of the original model with the FEIOU loss function, which further helps the model to optimize the position and size of the target frame.The mAP of the KThin-YOLOV7 is improved by 7.11% to 87.64% compared to the original YOLOV7-tiny model, while the number of parameters and computation of the model are decreased by 11.14% and 15.5%, respectively. decreased by 11.14% and 15.26%, respectively. Experimental results show that KThin-YOLOV7 can efficiently and accurately locate and detect defects on the surface of welded parts.

    参考文献
    相似文献
    引证文献
引用本文

卢开喜,段先华,陶宇诚,倪东海. KThin-YOLOV7:轻量级的焊接件表面缺陷检测[J].电子测量技术,2024,47(7):9-18

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-10
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知