基于温度传感阵列的TSV内部缺陷检测技术研究
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学机械工程学院 武汉 430068; 2.湖北泰和电气有限公司 襄阳 441057

作者简介:

通讯作者:

中图分类号:

TN305.94

基金项目:

湖北省科技创新人才计划(2023DJC048)资助、湖北省自然科学基金(2022CFB473)项目资助


Research on TSV internal defect detection technology based on temperature sensing array
Author:
Affiliation:

1.School of Mechanical Engineering, Hubei University of Technology,Wuhan 430068, China; 2.Hubei Taihe Electric Co., Ltd.,Xiangyang 441057, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在TSV三维集成领域,由于TSV内部缺陷的微小化和检测的不可接触性,寻找一个无损、灵敏且高效的内部缺陷检测方法尤为重要。针对这一挑战,提出了一种基于温度传感阵列的TSV内部缺陷检测方法。内部缺陷对TSV三维封装芯片的外部温度分布产生了影响,这些温度分布呈现出有规律的变化,每一种缺陷类型都会导致外部温度分布产生不同的偏差。利用温度传感阵列测量这些分布变化对缺陷进行有效的识别与分类。根据工作状态下的芯片产生的热信号以揭示其内部的缺陷信息,设计了基于温度传感阵列的检测系统。通过理论分析与仿真模拟,构建了模拟芯片工作状态下的温度分布和热变化的模型。实验中,以芯片样品的样本制备和测试平台搭建为基础,同时利用分类识别模型成功实现了对内部缺陷的有效分类,准确率高达99.17%。这种检测方法为高密度和微型化芯片的可靠性分析和故障诊断提供了一个经济高效的新途径。

    Abstract:

    In the field of TSV 3D integration, due to the miniaturization of internal defects and the challenges associated with non-contact detection, identifying a non-destructive, sensitive, and efficient method for internal defect detection is crucial. In response to this challenge, a TSV internal defect detection method based on a temperature sensor array has been proposed. Internal defects influence the external temperature distribution of TSV 3D packaged chips, displaying regular patterns of change. Each type of defect causes different deviations in the external temperature distribution. By utilizing a temperature sensor array to measure these distribution changes, effective identification and classification of defects can be achieved. A detection system, based on the temperature sensor array, was designed to reveal the internal defect information based on the thermal signals generated by chips under operational conditions. Through theoretical analysis and simulation modeling, a model simulating the temperature distribution and thermal changes of chips under working conditions was developed. In the experiments, based on the preparation of chip samples and the setup of a testing platform, effective classification of internal defects was achieved using a classification recognition model, reaching an accuracy rate of up to 99.17%. This detection method provides a cost-effective and efficient new approach for the reliability analysis and fault diagnosis of high-density and miniaturized chips.

    参考文献
    相似文献
    引证文献
引用本文

聂磊,于晨睿,张鸣,骆仁星.基于温度传感阵列的TSV内部缺陷检测技术研究[J].电子测量技术,2024,47(8):1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码