基于自注意力机制TCN-BiGRU的交通流预测
DOI:
CSTR:
作者:
作者单位:

上海工程技术大学航空运输学院 上海 201620

作者简介:

通讯作者:

中图分类号:

U491.14

基金项目:

国家自然科学基金面上项目(52175103)资助


Traffic flow prediction based on self-attention mechanism TCN-BiGRU
Author:
Affiliation:

School of Air Transport, Shanghai University of Engineering and Technology,Shanghai 201620, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为更精准地预测道路交通流,本文提出了基于自注意力机制TCN-BiGRU的交通流预测模型。该预测模型首先利用时间卷积网络(TCN)的卷积特性跨时间步的提取交通流数据中的时间相关性;其次,利用BiGRU双向捕捉交通流的时间相关特性,经过更新门和复位门后更全面的提取交通流的时间特性;考虑到双向门控循环单元在双向计算过程中存在有并行性较低和部分特征无法捕捉的情况,引入自注意力机制能够让模型能够注意到全局中不同输入之间的相关性,让模型能够不受序列长度限制的特征捕捉的难题,最大限度的保留特征进而提高模型的鲁棒性,最终得到交通流的预测值。为验证模型的适用性,本文选取真实的交通数据进行多组预测对比实验,在单一路段将预测结果与基准模型和多路段的经典模型以及消融进行对比,结果表明基于自注意力机制TCN-BIGRU对于多特征的单一路段或多路段的预测结果表现为:单一路段的MAE,MAPE/%,R2平均值分别为15.91,10.89,0.976;多路段的MAE,MAPE/%,R2分别为19.62,13.53,0.982,具有较好的预测效果,所建立的组合预测模型在预测精度上表现出更好的水平,为交通流的预测提供了良好的参考价值。

    Abstract:

    In order to enhance the accuracy of road traffic flow prediction, this paper proposes a traffic flow prediction model based on the self-attention mechanism TCN-BiGRU. Firstly, the predictive model utilizes the convolutional property of time convolutional network (TCN) to extract temporal correlations within traffic flow data across different time steps. Secondly, bidirectional BiGRU is employed to comprehensively capture time-related characteristics of traffic flow by updating and resetting gates. Recognizing that bidirectional gated recurrent unit has limited parallelism and may not capture certain features during bidirectional calculation, the introduction of self-attention mechanism allows the model to focus on global correlation between different inputs, overcoming limitations posed by sequence length in feature capture and maximizing feature retention for improved robustness. Finally, predicted values for traffic flow are obtained. To validate the applicability of the model, real traffic data is selected for multiple prediction and comparison experiments against benchmark models and ablation experimental models across various road segments. The results demonstrate that single or multiple section predictions using multiple features based on self-attention mechanism TCN-BiGRU yield mean MAE values of 15.91 and 19.62 respectively; MAPE/% values of 10.89 and 13.53 respectively; as well as R2 values of 0.976 and 0.982 respectively-indicating strong predictive performance.

    参考文献
    相似文献
    引证文献
引用本文

郝椿淋,张剑.基于自注意力机制TCN-BiGRU的交通流预测[J].电子测量技术,2024,47(8):61-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码