面向复杂环境的YOLOv8安全装备检测
DOI:
CSTR:
作者:
作者单位:

华北理工大学电气工程学院 唐山 063210

作者简介:

通讯作者:

中图分类号:

TP391;TN60

基金项目:

河北省自然科学基金(F2021209006)项目资助


YOLOv8 security equipment inspection for complex environments
Author:
Affiliation:

School of Electrical Engineering,North China University of Science and Technology,Tangshan 063210,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决现有安全帽和反光衣检测模型对小目标和复杂天气中目标检测精度低、环境干扰因素大、难以在性能一般移动设备部署等问题,设计实现一种改进YOLOv8安全装备检测模型YOLOv8-DSI。首先,设计基于残差思想和并行空洞卷积的DR-SPPF模块,进一步扩大感受野且不损失图像分辨率,显著提升复杂天气检测精度;其次,在特征融合阶段设计结构轻量特征金字塔网络ST-BiFPN,进一步减小模型参数量,实现高效多尺度特征融合;最后,引入Inner-ShapeIoU损失函数,使得边界框回归更加准确,增强检测效果。在自建数据集上,相较于基线模型mAP50和mAP50:95分别提升了2.1%和4.7%,而模型参数量仅为2.4 M,计算量仅为7.3 G,分别降低了10.9%和20.0%。最终将改进模型部署到Jetson Orin Nano边缘设备,通过在开发板实际运行证明,改进后模型在复杂场景下有效性和可应用性。

    Abstract:

    In order to solve the problems of low detection accuracy, large environmental interference factors, and difficult deployment in mobile devices with average performance of the existing detection algorithms for hard hats and reflective clothing on small targets and complex weather, an improved detection algorithm for YOLOv8 safety equipment, YOLOV8-DSI, was designed and implemented. Firstly, the DR-SPPF module based on residual idea and parallel cavity convolution is designed to further expand the receptive field without loss of image resolution, and significantly improve the precision of complex weather detection. Secondly, ST-BiFPN is designed in the feature fusion stage to further reduce the number of model parameters and achieve efficient multi-scale feature fusion. Finally, Inner-ShapeIoU loss function is introduced to make bounding box regression more accurate and enhance the detection effect. Compared with the baseline model mAP50 and MAP50:95, the self-built data set increased by 2.1% and 4.7% respectively, while the model parameter number was only 2.4 M and the calculation amount was only 7.3 G, which decreased by 10.9% and 20.0% respectively. Finally, the improved model was deployed to the edge device of Jetson Orin Nano. The actual operation on the development board proved that the improved model of YOLOv8 was effective and applicable in complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文

许迪,张淑卿,葛超.面向复杂环境的YOLOv8安全装备检测[J].电子测量技术,2024,47(7):121-129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-10
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知