基于改进YOLOX-tiny算法的交警手势识别
DOI:
CSTR:
作者:
作者单位:

上海大学微电子研究与开发中心 上海 200444

作者简介:

通讯作者:

中图分类号:

TP391.4;TN791

基金项目:


Traffic police gesture recognition based on improved YOLOX-tiny algorithm
Author:
Affiliation:

Microelectronics Research and Development Center, Shanghai University,Shanghai 200444, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了在城市中实现无人驾驶,需要能够高效检测交警的现场指挥手势。针对现有手势识别算法识别精度低、检测速度慢、难以应对复杂道路环境等问题,提出一种改进的YOLOXtiny交警手势识别算法。首先,使用改进后的GhostNet网络替换原主干网络,并且插入坐标注意力机制,全面提取输入图像特征,提高了网络的检测精度,同时提升了对中小型目标的检测效果;其次,改进解耦头部分,设计了SCDE Head结构,在减少计算量的同时过滤冗余信息,使得解耦头更有效率,并且解耦头融合了多尺度的特征,提升了目标检测准确率;最后,将SIoU应用到定位损失中,加快网络收敛的速度,提升回归精度。在自制的交警指挥手势数据集上进行测试,实验结果表明,与YOLOX-tiny模型对比,改进后算法参数量减少了27.97%,模型计算量减少了33.31%,且平均检测精度提高了2.31%,检测速度提升了45%,更适合汽车无人驾驶以及硬件部署方面的实际需求。

    Abstract:

    In order to achieve autonomous driving in cities, it is necessary to be able to efficiently detect the on-site command gestures of traffic police. Aiming at the problems of low recognition accuracy, slow detection speed, and difficulty in dealing with complex road environments in existing gesture recognition algorithms, an improved YOLOX-tiny traffic police gesture recognition algorithm is proposed. Firstly, an improved GhostNet network was used to replace the original backbone network, and a Coordinate Attention mechanism was inserted to comprehensively extract input image features, improving the detection accuracy of the network and enhancing the detection performance for small and medium-sized targets; Secondly, the decoupling head was improved by designing the SCDE Head structure, which reduces computational complexity while filtering redundant information, making the decoupling head more efficient. The decoupling head also integrates multi-scale features, improving the accuracy of object detection; Finally, applying SIoU to localization loss accelerates network convergence and improves regression accuracy. Tested on a self-made traffic police command gesture dataset, the experimental results showed that compared with the YOLOX-tiny model, the improved algorithm reduced the number of parameters by 27.97%, the model′s computational complexity by 33.31%, and the average detection accuracy increased by 2.31%, with a 45% increase in detection speed, which is more suitable for the practical needs of autonomous driving and hardware deployment.

    参考文献
    相似文献
    引证文献
引用本文

方吴逸,陈章进,唐英杰.基于改进YOLOX-tiny算法的交警手势识别[J].电子测量技术,2024,47(8):100-109

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码