IMU紧耦合的多激光雷达定位与建图方法
DOI:
CSTR:
作者:
作者单位:

1.长三角哈特机器人产业技术研究院 芜湖 241006; 2.安徽师范大学计算机与信息学院 芜湖 241000

作者简介:

通讯作者:

中图分类号:

TN958.98;TP391.9

基金项目:

国家自然科学基金(61972438)、芜湖市科技计划项目(2022yf50)资助


IMU tightly coupled multi-lidar positioning and mapping method
Author:
Affiliation:

1.Hart Robot Industry Technology Research Institute of Yangtze River Delt,Wuhu 241006, China; 2.College of Computer and Information, Anhui Normal University,Wuhu 241000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在许多移动机器人的应用场景下,如自动化仓储物流场景,由于激光雷达安装位置的限制,采用单一激光雷达的SLAM解决方案存在视场受限以及难以闭环的问题。为此基于FASTLIO2算法提出了一种IMU紧耦合的多激光雷达定位与建图方法,该方法在扩展了机器人的感知范围的同时提高了定位精度和建图效果。通过公开数据集的离线测试以及自建实验平台的在线测试,相较于M-LOAM、FAST-LIO2和Faster-LIO算法,所提出的算法在定位精度和建图效果上取得了显著提升,并具有更低的回环漂移。

    Abstract:

    In various applications of mobile robotics, such as automated warehousing logistics scenarios, due to the limitation of lidar installation location. The adoption of a single LiDAR for Simultaneous Localization and Mapping (SLAM) introduces challenges pertaining to restricted field of view and complexities in achieving loop closure. In response, we proposes a multi-LiDAR localization and mapping methodology incorporating tight coupling with an Inertial Measurement Unit (IMU), building upon the FAST-LIO2 algorithm. This approach not only expands the perceptual range of the robot but also enhances localization precision and mapping effect. Through rigorous evaluation via offline tests utilizing public datasets and online experiments conducted on the experimental platform, the proposed algorithm demonstrates marked enhancements in localization accuracy and mapping effect compared to the M-LOAM and FAST-LIO2 algorithms, concurrently exhibiting reduced loop closure drift.

    参考文献
    相似文献
    引证文献
引用本文

李倩,陈付龙,郑亮,赵法龙,陈智君. IMU紧耦合的多激光雷达定位与建图方法[J].电子测量技术,2024,47(9):26-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-04
  • 出版日期:
文章二维码