油田注水管道内腐蚀剩余寿命预测研究
DOI:
作者:
作者单位:

西安建筑科技大学

作者简介:

通讯作者:

中图分类号:

TE832

基金项目:

国家自然科学基金项目(41877527);陕西省社科基金项目(2018S34)


Research on the prediction of the remaining life of internal corrosion in oilfield water injection pipelines
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为估算管线剩余安全服役年限,本文提出基于灰色关联度分析的极端梯度提升算法模型。应用灰色关联度分析(grey relational analysis,GRA)计算各个影响因素与剩余寿命的关联度值并排序,优选高关联度影响因素数据输入到极限梯度提升算法(extreme gradient boosting,XGBoost)中进行腐蚀管道剩余寿命预测。以某油田注水管道为例,结果该模型中均方根误差(root mean square error,RMSE)为0.012,平均绝对误差(mean absolute error,MAE)为0.068,拟合优度(R2)为0.999,并与其余3种预测模型进行对比,结果本文所构建的模型预测精度和泛化性能均更优。

    Abstract:

    In order to estimate the remaining safe service life of the pipeline, the extreme gradient boosting algorithm model besed on grey correlating analysis was proposed. Grey Relational Analysis (GRA) was used to calculate and rank the correlation values between each influencing factor and the remaining life, and the data of the influencing factors with high correlation were preferably input into the eXtreme Gradient Boosting (XGBoost) algorithm for the prediction of the remaining life of corroded pipelines. Taking an oilfield water injection pipeline as an example, the results showed that the Root Mean Square Error (RMSE) was 0.012, the Mean Absolute Error (MAE) was 0.068, and the goodness of fit (R2) was 0.999, compared with the other three prediction models, the results showed that the prediction accuracy and generalization performance of the model constructed in this paper were better.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-23
  • 最后修改日期:2024-05-23
  • 录用日期:2024-05-24
  • 在线发布日期:
  • 出版日期: