基于ICEEMDAN和TCN-AM-BiGRU的短期光伏功率预测
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院 南京 210044; 2.无锡学院自动化学院 无锡 214105

作者简介:

通讯作者:

中图分类号:

TN06;TP271

基金项目:


Short-term photovoltaic power prediction based on ICEEMDAN and TCN-AM-BiGRU
Author:
Affiliation:

1.School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2.School of Automation, Wuxi University, Wuxi 214105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏发电功率的准确预测对综合能源系统的安全稳定运行以及实时控制至关重要。为解决光伏功率预测过程中存在噪声干扰以及传统的单一预测模型存在预测精度较差等问题,本文提出一种基于ICEEMDAN和TCN-AM-BiGRU相结合的短期光伏功率预测模型。首先,利用皮尔逊相关系数筛选关键气象因素,通过模糊C均值聚类将光伏功率历史数据划分为晴天、多云和阴雨3种相似日;其次利用ICEEMDAN将历史训练集分解成若干个较为规律的子序列,并根据排列熵值进行重构;最后,通过TCN提取序列特征,引入注意力机制赋予不同的权重,再通过BiGRU进行预测,输出最终的预测结果。以某光伏电站的实际数据为例对预测模型和其他模型进行验证和分析,结果表明在晴天、多云和阴雨天气下,相比其他对比模型,所提模型准确率平均提高了1.69%、3.58%和4.40%,MAE平均降低了57.61%、36.83%和40.94%,RMSE平均降低了56.90%、34.30%和36.63%,验证了本文模型的有效性和优越性。

    Abstract:

    The accurate prediction of PV power is very important for the safe and stable operation and real-time control of the integrated energy system. In order to solve the problems of noise interference in photovoltaic power prediction and poor prediction accuracy of traditional single prediction model, a short-term photovoltaic power prediction model based on ICEEMDAN and TCN-AM-BiGRU is proposed. Firstly, the Pearson correlation coefficient was used to screen the key meteorological factors, and the historical PV power data were divided into three similar days: sunny, cloudy and rainy by fuzzy C-means clustering. Secondly, ICEEMDAN is used to decompose the historical training set into several regular subsequences and reconstruct them according to the permutation entropy. Finally, the sequence features are extracted by TCN, the attention mechanism is introduced to assign different weights, and then the prediction is made by BiGRU to output the final prediction result. Taking the actual data of a photovoltaic power station as an example, the prediction model and other models were verified and analyzed. The results showed that in sunny, cloudy and rainy weather, compared with other comparison models, the accuracy of the proposed model increased by 1.69%, 3.58% and 4.40% on average, the MAE decreased by 57.61%, 36.83% and 40.94% on average, and the RMSE decreased by 56.90%, 34.30% and 36.63% on average, which verified the effectiveness and superiority of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文

白隆,俞斌,高峰,顾晋豪,徐婕.基于ICEEMDAN和TCN-AM-BiGRU的短期光伏功率预测[J].电子测量技术,2024,47(9):61-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-04
  • 出版日期:
文章二维码