基于时空感知Transformer的交通流预测模型
DOI:
CSTR:
作者:
作者单位:

1.南通大学交通与土木工程学院 南通 226019; 2.南通大学信息科学技术学院 南通 226019

作者简介:

通讯作者:

中图分类号:

U491.14;TN953.1

基金项目:

国家自然科学基金(61771265)、江苏高校“青蓝工程”项目、南通市科技计划项目(JC2021198)资助


Traffic flow prediction model based on spatial-temporal aware Transformer
Author:
Affiliation:

1.School of Transportation and Civil Engineering, Nantong University,Nantong 226019, China; 2.School of Information Science and Technology, Nantong University,Nantong 226019, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    交通流预测是智能交通系统的一个热点研究领域,其根本挑战是对交通数据中复杂的时空相关性进行有效建模。针对大部分现有时空Transformer模型在构建时空相关性矩阵时忽略了时间趋势性和空间异质性的重要影响的问题,提出一种基于时空感知Transformer的交通流预测模型。首先,采用改进的时空感知自注意力机制挖掘交通流数据中潜在的时间趋势性和空间异质性特征,建立精确的时空相关性矩阵以获取全局时空特征;然后,使用多尺度扩散卷积模拟交通流在路网中的多阶扩散过程,捕获节点多邻域范围的局部空间特征;最后,采用多元特征融合模块对捕获的时空特征进行自适应融合并输出预测结果。在PeMS04和PeMS08两个真实交通数据集上进行实验,结果表明,与最近提出的RPConvformer、ASTGNN、PDFormer等基于Transformer的基线模型相比,新模型的平均绝对误差分别降低了8.0%、6.5%和2.0%。

    Abstract:

    Traffic flow prediction is a hot research area in intelligent transportation systems, and the fundamental challenge is to effectively model the complex spatial-temporal correlations in traffic data. To address the problem that most existing spatial-temporal Transformer models ignore the important effects of temporal trend and spatial heterogeneity when constructing spatial-temporal correlation matrices, a traffic flow prediction model based on Spatial-Temporal Aware Transformer (STAFormer) is proposed. First, an improved spatial-temporal aware self-attention mechanism is used to mine potential temporal trend and spatial heterogeneity features in traffic flow data, establishing an accurate spatial-temporal correlation matrix to obtain global spatial-temporal features. Then, the multi-range diffusion convolution is used to simulate the multi-order diffusion process of traffic flow in the road network to capture the local spatial features. Finally, the multivariate feature fusion module is used to adaptively fuse the captured spatial-temporal features and output the prediction results. Experiments are conducted on two real traffic datasets, i.e. PeMS04 and PeMS08, and the results show that, compared with the recently proposed Transformer-based models such as RPConvformer, ASTGNN, and PDFormer, the mean absolute errors of STAFormer are reduced by 8.0%, 6.5%, and 2.0%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

鲁思源,沈琴琴,包银鑫,高锐锋,施佺.基于时空感知Transformer的交通流预测模型[J].电子测量技术,2024,47(10):85-92

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-12
  • 出版日期:
文章二维码