基于雷达RCS数据的空间目标识别算法研究
DOI:
CSTR:
作者:
作者单位:

1.上海应用技术大学计算机科学与信息工程学院 上海 201418; 2.深圳技术大学工程物理学院 深圳 518118

作者简介:

通讯作者:

中图分类号:

TN957.52

基金项目:

上海市自然科学基金(21ZR1462600)项目资助


Research on space object recognition algorithm based on radar RCS data
Author:
Affiliation:

1.School of Computer Science and Information Engineering, Shanghai Institute of Technology,Shanghai 201418, China; 2.The College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,深度学习在雷达目标识别领域取得了突破性进展,但基于雷达散射截面积数据的深度学习目标识别算法研究相对甚少。此外,空间目标雷达信号容易受噪声影响,导致目标识别准确率低。本文提出了一种端到端的时频特征融合神经网络TFF-Net用于实现基于RCS序列数据的空间目标识别。首先使用时频分析方法将RCS序列数据转化为二维时频数据来降低噪声干扰,其次使用TFFNet提取时频数据的深层特征。TFF-Net先利用卷积神经网络捕获目标空间特征,接着采用双向长短时记忆网络来建模时序信息,再通过时间注意力网络自适应地关注时频数据中重要的序列。最后,在空间目标数据集上进行了算法对比实验。结果表明,所提出算法的空间目标识别精度达到95.8%,明显高于当前一些主流雷达目标识别算法,且在低信噪比情况下分类精度也优于其他算法,具有更好的噪声鲁棒性。

    Abstract:

    In recent years, deep learning has achieved breakthrough progress in radar target recognition. However, research on deep learning target recognition algorithms based on radar cross-section (RCS) data is relatively scarce. Additionally, space target radar signals are easily affected by noise, resulting in low target recognition accuracy. This paper proposes an end-to-end Time-Frequency Feature Fusion Neural Network (TFF-Net) for space target recognition based on RCS sequence data. First, time-frequency analysis methods are used to convert the RCS sequence data into two-dimensional time-frequency data to reduce noise interference. Then, TFF-Net is used to extract deep features from the time-frequency data. TFF-Net first uses a convolutional neural network to capture spatial features of the targets, then employs a bidirectional long short-term memory network to model temporal information, and finally applies a temporal attention network to adaptively focus on important sequences in the time-frequency data. Comparative experiments were conducted on a space target dataset. The results show that the proposed algorithm achieves a space target recognition accuracy of 95.8%, significantly higher than several current mainstream radar target recognition algorithms. Furthermore, the classification accuracy under low signal-to-noise ratio conditions is also superior to other algorithms, demonstrating better noise robustness.

    参考文献
    相似文献
    引证文献
引用本文

张裕,李建鑫,朱勇建,马腾.基于雷达RCS数据的空间目标识别算法研究[J].电子测量技术,2024,47(10):19-26

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-12
  • 出版日期:
文章二维码