基于注意力机制融合特征的车辆目标检测方法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学 南京 210044; 2.无锡学院 无锡 214105; 3.无锡汐沅科技有限公司 无锡 214000

作者简介:

通讯作者:

中图分类号:

TN919.8

基金项目:


Vehicle object detection method based on attention mechanism integrated features
Author:
Affiliation:

1.Nanjing University of Information Science and Technology,Nanjing 210044, China; 2.Wuxi University,Wuxi 214105, China; 3.Wuxi Xiyuan Co., Ltd. of Technology,Wuxi 214000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决道路监控下的车辆目标检测精度低的问题,本文提出一种改进YOLOv7的车辆检测方法。首先引入跨空间学习的高效多尺度注意机制EMA来提高对特征信息的关注;其次将颈部网络中的SPPCSPC模块替换为SPPFCSPC模块,裁剪CBS层,引入EMA注意力机制,以强化对小目标区域的关注,获取更准确的车辆特征;同时,将EMA注意力引入MP模块中,使网络融合更多重要的特征信息;最后,采用MPDIoU损失函数,加快模型收敛速度并提高检测精度。实验结果表明,改进后的YOLOv7检测精度为86.69%,相比原始YOLOv7网络提高了2.83%,可以有效地提升车辆目标检测精度,为道路视频监控等提供保证。

    Abstract:

    To address the issue of low vehicle detection accuracy in road surveillance, this paper proposes an improved vehicle detection method based on YOLOv7. Firstly, we introduce the Efficient Multi-Scale Attention Mechanism (EMA) for cross-space learning to enhance attention to feature information. Secondly, we replace the SPPCSPC module in the neck network with the SPPFCSPC module, trim the CBS layer, and introduce the EMA attention mechanism to strengthen attention to small target areas, thereby obtaining more accurate vehicle features. Additionally, we incorporate the EMA attention into the MP module to fuse more important feature information. Finally, employing the MPDIoU loss function accelerates model convergence and enhances detection accuracy. Experimental results show that the improved YOLOv7 achieves a detection accuracy of 86.69%, which is a 2.83% improvement over the original YOLOv7 network. This enhancement effectively boosts the accuracy of vehicle object detection, providing assurance for applications such as road video surveillance.

    参考文献
    相似文献
    引证文献
引用本文

过鑫炎,朱硕,孙佳豪,梁吉丰,汪宗洋.基于注意力机制融合特征的车辆目标检测方法[J].电子测量技术,2024,47(9):52-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-04
  • 出版日期:
文章二维码