双阶段噪声自适应超声图像分割网络
DOI:
CSTR:
作者:
作者单位:

武汉工程大学计算机科学与工程学院 武汉 430205

作者简介:

通讯作者:

中图分类号:

TP389.1;TN919.81

基金项目:

东省数字孪生人重点实验室项目(2022B1212010004)、智能机器人湖北省重点实验室项目(HBIRL202202)、中央高校基本科研业务费专项(PA2023IISL0095)、武汉工程大学第十五届研究生教育创新基金 (CX2023319)、湖北省自然科学基金(2022CFB804)项目资助


Two-stage noise adaptation network for medical image segmentation
Author:
Affiliation:

School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在医学图像分割领域,不同设备或参数的噪声干扰对模型的泛化产生负面影响。为解决由不同噪声源导致的分割模型性能下降问题,提出了一种自适应噪声污染的双阶段高效分割模型NANet。该模型主要包括两部分:去噪和分割。其中去噪部分采用无监督的U型自动编码器结构,结合频域可学习的去噪模块,以缓解噪声引起的目标域差异。分割部分基于DeepLabv3+架构构建模块,聚焦于提高噪声污染超声图像中目标的分割准确度和泛化能力。实验测试了4个不同的超声数据集在受到均匀、高斯和椒盐噪声污染下,模型的分割性能。实验结果表明,所提出的NANet在臂丛神经超声数据集的原始图像、受均匀噪声、高斯噪声以及椒盐噪声污染的图像数据上分割的Dice系数分别为79.71%、78.51%、79.75%和79.1%。对比实验显示,NANet在不同噪声类型的超声图像上的分割性能明显优于传统分割方法,其中在高斯和椒盐噪声污染的超声图像上,准确率相比U-Net、DeepLabv3+和AttUNet方法均提高超过10%。结果验证了所提出的NANet在不同噪声环境中的鲁棒性和泛化能力。

    Abstract:

    In the field of medical image segmentation, noise interference from different devices or parameters negatively affects the generalization of the model. To solve the problem of segmentation model performance degradation caused by different noise sources, a two-stage efficient segmentation model NANet with adaptive noise pollution is proposed.The model mainly consists of two parts: denoising and segmentation. The denoising part uses an unsupervised U-shaped autoencoder structure combined with a frequency-domain learnable denoising module to mitigate the noise-induced target-domain differences. The segmentation part builds modules based on the DeepLabv3+architecture, focusing on improving the segmentation accuracy and generalization ability of targets in noise-polluted ultrasound images. Experiments were conducted to test the segmentation performance of the model on four different ultrasound datasets contaminated with uniform, Gaussian and pretzel noise. The experimental results show that the Dice coefficients of the proposed NANet for segmentation on the original image of the brachial plexus neural ultrasound dataset, the image data contaminated by uniform, Gaussian, and pretzel noises are 79.71%, 78.51%, 79.75%, and 79.1%, respectively. Comparison experiments show that the segmentation performance of NANet on ultrasound images with different noise types is significantly better than that of traditional segmentation methods, in which the accuracy is improved by more than 10% compared to U-Net, DeepLabv3+, and AttUNet methods on both Gaussian and pretzel noise images. The results validate the robustness and generalization ability of the proposed NANet in different noise environments.

    参考文献
    相似文献
    引证文献
引用本文

王霞霞,张炫,吴兴隆,黄青,徐国平.双阶段噪声自适应超声图像分割网络[J].电子测量技术,2024,47(10):175-183

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-12
  • 出版日期:
文章二维码