基于卡尔曼滤波的小波去噪和IWOA-ELM的颈肩肌肉疲劳分类方法
DOI:
CSTR:
作者:
作者单位:

1.天津工业大学机械工程学院 天津 300387; 2.天津市现代机电装备技术重点实验室 天津 300387

作者简介:

通讯作者:

中图分类号:

TN911.7; R741.044

基金项目:

中国航空科学基金(201729Q2001)项目资助


Classification method for neck and shoulder muscle fatigue based on Kalman filter wavelet denoising and IWOA-ELM
Author:
Affiliation:

1.School of Mechanical Engineering, Tian Gong University,Tianjin 300387, China; 2.Tianjin Modern Electromechanical Equipment Technology Key Laboratory,Tianjin 300387, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对采集的表面肌电信号噪声干扰多,以及缺少颈肩肌肉疲劳状态划分标准和分类模型的问题,本文提出了一种基于联合去噪和优化极限学习机的颈肩肌肉疲劳分类方法。首先,使用AnyBody建立颈肩骨骼肌肉生物力学模型,根据肌肉pH值和RPE劳累感知量表划分肌肉疲劳状态。采集6名健康青年人斜方肌上束疲劳状态下的表面肌电信号。然后,结合卡尔曼滤波和改进的小波阈值函数进行联合去噪,提取均方根、积分肌电值、平均功率频率、中值频率、瞬时平均频率、瞬时中值频率6个特征参数。最后,使用改进鲸鱼优化算法优化极限学习机的权值和阈值,建立IWOA-ELM颈肩肌肉疲劳分类模型。实验结果表明,联合去噪算法效果更佳,IWOA-ELM模型训练集准确率为96.3%,测试集准确率为97.5%,均方根误差为1.108,对于不同受试者分类模型准确率均高于95%,因此本文提出的联合去噪算法和IWOA-ELM模型在颈肩肌肉疲劳分类方面具有优势。

    Abstract:

    Aiming at the problem of much noise interference in the acquired surface EMG signals and the lack of neck and shoulder muscle fatigue state classification standard and classification model, this paper proposes a neck and shoulder muscle fatigue classification method based on joint denoising and optimized limit learning machine. First, AnyBody was used to establish a biomechanical model of neck and shoulder skeletal muscles, and the muscle fatigue state was classified according to the muscle pH value and the RPE exertion perception scale. Surface EMG signals were collected from six healthy young people in the fatigue state of the upper trapezius muscle bundle. Then, joint denoising was performed by combining Kalman filtering and improved wavelet threshold function to extract six feature parameters: root mean square, integrated electromyography, mean power frequency, median frequency, instantaneous mean power frequency, and instantaneous median frequency. Finally, the weights and thresholds of Extreme Learning Machine were optimized using Improved Whale Optimization Algorithm to establish the IWOA-ELM neck and shoulder muscle fatigue classification model. The experimental results show that the joint denoising algorithm is more effective, and the accuracy of the IWOA-ELM model is 96.3% in the training set and 97.5% in the test set, with a root mean square error of 1.108, and the accuracy of the classification model is higher than 93% for different subjects, so the joint denoising algorithm and the IWOA-ELM model proposed in this paper have an advantage in classifying the fatigue of neck and shoulder muscles.

    参考文献
    相似文献
    引证文献
引用本文

隋修武,付世雄,刘金雨,王涛,刘阳.基于卡尔曼滤波的小波去噪和IWOA-ELM的颈肩肌肉疲劳分类方法[J].电子测量技术,2024,47(10):10-18

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-12
  • 出版日期:
文章二维码