基于改进麻雀算法的配电房巡检机器人路径规划
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学自动化学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP242;TN966

基金项目:

国家自然科学基金(62373195)、中国高校产学研创新基金(2022BL066)项目资助


Path planning of inspection robot in distribution room based on improved sparrow search algorithm
Author:
Affiliation:

School of Automation, Nanjing University of Information Science and Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对麻雀算法在路径规划中出现的效率低、耗时长等问题,提出了一种改进的麻雀算法用于配电房巡检机器人的路径规划。首先,利用LogisticTent混沌映射优化麻雀种群质量,减少后续的盲目搜索;其次,提出了可控自适应随机探索的发现者更新策略,增强算法全局搜索能力的同时进一步提高规划效率,缩短搜索时间;接着,为避免算法后期陷入停滞,引入螺旋位置更新因子,加强局部开发能力;最后,结合三次插值B样条进行平滑处理,使路径更适用于配电房环境。实验结果表明:改进的麻雀算法能够高效完成巡检时的路径规划任务,相比于原始算法在迭代效率、路径搜索时间等方面优化显著。

    Abstract:

    Aiming at the problems of low efficiency and long time consumption in path planning of sparrow algorithm, an improved sparrow algorithm is proposed for path planning of inspection robots in distribution rooms. Firstly, using Logistic Tent chaotic mapping to optimize the quality of sparrow population and reduce subsequent blind searches. Secondly, a controllable adaptive random exploration discoverer update strategy was proposed to enhance the algorithm′s global search capability while further improving planning efficiency and shortening search time. Next, in order to avoid algorithm stagnation in the later stage, a spiral position update factor is introduced to enhance local development capabilities. Finally, combining cubic interpolation B-splines for smoothing processing makes the path more suitable for the distribution room environment. The experimental results show that the improved sparrow algorithm can efficiently complete the path planning task during inspections. Compared to the original algorithm, it is significantly optimized in terms of iteration efficiency, path search time, and other aspects.

    参考文献
    相似文献
    引证文献
引用本文

高鹏飞,李涛,夏永康.基于改进麻雀算法的配电房巡检机器人路径规划[J].电子测量技术,2024,47(10):62-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-12
  • 出版日期:
文章二维码