基于改进YOLOv8n的变电设备红外图像实例分割算法
DOI:
CSTR:
作者:
作者单位:

华北电力大学自动化系 保定 071003

作者简介:

通讯作者:

中图分类号:

TP391.4;TN081

基金项目:

国家自然科学基金面上项目(62373151)、国家自然科学基金联合基金项目重点支持项目(U21A20486)、河北省自然科学基金面上项目(F2023502010)、中央高校基本科研业务费专项资金(20237488)资助


Instance segmentation algorithm for infrared images of substation equipment based on improved YOLOv8n
Author:
Affiliation:

Department of Automation, North China Electric Power University, Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    变电设备是电网输变电过程的重要组成部分,为保证电网的正常运行,需对变电设备进行故障诊断,红外图像中变电设备的精确分割是故障诊断的关键步骤。针对红外图像复杂场景中变电设备分割时存在的分割精度低和漏分割的问题,提出一种基于改进YOLOv8n的变电设备红外图像实例分割算法。首先设计一种上下文引导的特征增强下采样块替换YOLOv8n中的下采样卷积层,充分利用上下文信息和全局信息,增强模型对复杂场景的理解能力;然后引入可变形卷积重构Backbone中的C2f模块,增强对不规则设备特征的提取能力;最后用Wise-IOUv2对损失函数进行优化,提高模型的泛化性和分类能力。使用变电设备红外图像数据集对该模型进行实验验证,实验结果表明,相较于YOLOv8n基准模型,本文所提方法的mAP50和mAP50:95分别提高了4.2%和3.5%,所提方法能够较好地解决复杂场景下设备漏分割的问题,有效提高变电设备实例分割的准确率。

    Abstract:

    The substation equipment is an important component of the power transmission and transformation process of the power grid. To ensure the normal operation of the power grid, it is necessary to diagnose faults in substation equipment, and accurate segmentation of substation equipment in infrared images is a key step in fault diagnosis. In response to the low segmentation accuracy and missed segmentation issues faced when segmenting substation equipment in complex scenes of infrared images, an instance segmentation algorithm for substation equipment in infrared images based on improved YOLOv8n is proposed. Firstly, a context-guided feature-enhanced down-sampling block is designed to replace the down-sampling convolutional layer in YOLOv8n, fully utilizing contextual and global information to enhance the model′s understanding of complex scenes. Then, the C2f module is introduced to reconstruct the deformable convolution in the Backbone, enhancing the extraction capability of irregular equipment features. Finally, the loss function is optimized using Wise-IOUv2 to improve the model′s generalization and classification ability. Using the infrared image dataset of substation equipment to experimentally verify the model, the experimental results show that compared to the YOLOv8n baseline model, the proposed method in this paper has increased mAP50 and mAP50:95 by 4.2% and 3.5% respectively. The proposed method can better solve the problem of missed segmentation of equipment in complex scenes and effectively improve the accuracy of substation equipment instance segmentation.

    参考文献
    相似文献
    引证文献
引用本文

李冰,杜喜英,王玉莹,翟永杰.基于改进YOLOv8n的变电设备红外图像实例分割算法[J].电子测量技术,2024,47(10):151-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-12
  • 出版日期:
文章二维码