基于注意力门控多层感知器睡眠分期研究*
CSTR:
作者单位:

辽宁石油化工大学

中图分类号:

TP391

基金项目:

辽宁省教育厅基本科研项目面上项目


sleep staging based on attention gated multi-layer perceptron mechanisms
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    睡眠分期在睡眠障碍诊断中具有重要意义。目前的自动睡眠分期方法大多集中在研究时域信息,且睡眠阶段之间的过渡规则往往无法被识别和捕获,导致睡眠分类准确率低。为解决这一问题,提出基于单通道脑电(EEG)信号的融合多尺度特征和注意力门控多层感知器的睡眠分期方法(Multi-scale features and Attention gated multi-layer perceptron SleepNet? MA-SleepNet)。该模型由多尺度特征提取模块、压缩激励网络模块和注意力门控多层感知器网络模块组成。多尺度特征提取模块采用双通道卷积从脑电信号中提取不同尺度波形特征;压缩激励网络模块采用压缩激励模块学习多尺度特征的重要程度,提升有效特征;注意力门控多层感知器模块将多层感知器与门控机制结合起来,同时加入简单的自注意力机制,实现不同维度之间的数据通信,整合信息中的有效特征。在Sleep-edf-20和sleep-edf-78数据库上MA-SleepNet模型分别达到了86.1%和83.2%的睡眠分期准确率。与现有典型研究结果相比,该方法提高了分类性能。

    Abstract:

    Sleep staging has attracted much attention as an important method for studying sleep disorders in recent years. The majority of the current automatic sleep staging methods focus on studying time-domain information and ignore the interrelation between features, resulting in low sleep classification accuracy. To solve these problems, a multi-scale features and attention gated multi-layer perceptron mechanisms named MA-SleepNet is proposed for automatic sleep stage classification, using single-channel electroencephalogram (EEG) signals. The network consists of a multi-scale feature extraction (MFE), squeeze and excitation network (SE), and an attention gated multi-layer perceptron mechanism(aMLP). The MFE module uses convolutional kernels of different sizes to fully extract different scale features from EEG signals. The SE module further optimizes the weight of features and improves the feature expression ability of the network. The aMLP module combines multi-layer perceptron with gating mechanism, adds tiny self-attention mechanism to realize data communication between different dimensions and integrates powerful feature representation.The MA-SleepNet model is evaluated on two public datasets, Sleep-EDF-20 and Sleep-EDF-78. It achieves the accuracy of 86.1% and 83.2% on the Fpz-Cz channel, respectively. Compared with the existing sleep staging methods, our method improves the classification performance.

    参考文献
    [1] Luyster FS, Strollo J, Zee PC and Walsh JK..Sleep: a health imperative[J]. American academy of sleep medicine, 2012.35(6): 727-734.
    [2] St-Onge P, Grandner A, Brown D, Conroy B, Jean-Louis G, Coons M and Bhatt DL. 2016. Sleep duration and quality:Impact on lifestyle behaviors and cardiometabolic health: a scientific statement from the American Heart Association. Circulation[J], 2016.134(18): e367-e386.
    [3] Kecklund G and Axelsson J. Health consequences of shift work and insufficient sleep[J]. Bmj,2016. 355:p.i5210.
    [4] Berry RB, Budhiraja R, Gottlieb D J, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events: deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine[J]. Journal of clinical sleep medicine, 2012, 8(5): 597-619.
    [5] Lajnef T, Chaibi S, Ruby P, Aguera E, Eichenlaub B,Samet M and Jerbi and K. 2015. Learning machines and sleeping brains: automatic sleep stage classification using decisiontree multi-class support vector machines. Journal of neuroscience methods, 250: 94-105.
    [6] Fraiwan L, Lweesy K, Khasawneh N, Wenz H and Dickhaus H. 2012. Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and forest classifier. Computer methods and programs in biomedicine, 108(1): 10-19.
    [7] Hassan AR and Bhuiyan MIH. 2016. A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features. Journal of neuroscience methods, 271: 107-118.
    [8] Supratak A, Dong H, Wu C and Guo Y. 2017. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(11):1998-2008.
    [9] Sun C, Chen C, Li W, Fan J and Chen W. 2019. A hierarchical neural network for sleep stage classification based on comprehensive feature learning and multi-flow sequence learning. IEEE journal of biomedical and health informatics, 24(5): 1351-1366.
    [10] Mousavi S, Afghah F and Acharya UR. 2019. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PloS one, 14(5): e0216456.
    [11] Liao Y, Zhang C, Zhang M, Wang Z and Xie X. 2021. Light-SleepNet: Design of a personalized portable sleep staging system based on single-channel EEG. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(1): 224-228.
    [12] Yang B, Zhu X, Liu Y and Liu H. 2021. A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model. Biomedical Signal Processing and Control, 68, 102581.
    [13] Eldele E, Chen Z, Liu C, Wu M, Kwoh CK, Li X and Guan C. 2021. An attention-based deep learning approach for sleep stage classification with single-channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29: 809-818.
    [14] Khalili E and Asl BM. 2021. Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG. Computer Methods and Programs in Biomedicine, 204, 106063.
    [15] Liu H, Dai Z, So D, et al. Pay attention to mlps[J]. Advances in neural information processing systems, 2021, 34: 9204-9215.
    [16] Goldberger AL, Amaral LA, Glass L, Hausdorff J M, Ivanov PC, Mark RG and Stanley HE. 2000. PhysioBank, and PhysioNet: components of a new research resource for complex physiologic signals. circulation, 101(23): e215-e220.
    [17] Iber C. 2007. The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification. (No Title).
    [18] Fiorillo L, Favaro P and Faraci FD. 2021. Deepsleepnet-lite: A simplified automatic sleep stage scoring model with uncertainty estimates. IEEE transactions on neural systems and rehabilitation engineering, 29: 2076-2085.
    [19] Phan H, Andreotti F, Cooray N, Ch′en OY and De Vos M. 2018. Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Transactions on Biomedical Engineering, 66(5): 1285-1296.
    [20] Yang B, Wu W, Liu Y and Liu H. 2022. A novel sleep stage contextual refinement algorithm leveraging conditional random fields. IEEE Transactions on Instrumentation and Measurement, 71: 1-13.
    [21] Phan H, Andreotti F, Cooray N and Chén, OY, 2019.SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging.?IEEE Transactions on Neural Systems and Rehabilitation Engineering,?27(3), 400-410.
    [22] 常万杰,刘琳琳,曹宇,等.基于Informer算法的病毒传播预测研究[J].辽宁石油化工大学学报,2024,44(01):80-88.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:139
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-17
  • 最后修改日期:2024-07-29
  • 录用日期:2024-07-29
文章二维码