基于改进蜘蛛蜂算法的无人机三维路径规划
DOI:
CSTR:
作者:
作者单位:

江苏科技大学自动化学院 镇江 212000

作者简介:

通讯作者:

中图分类号:

TN929;V279;TP18

基金项目:

国家自然科学基金青年基金(61903163)项目资助


UAV 3D path planning based on improved spider wasp optimization algorithm
Author:
Affiliation:

College of Automation, Jiangsu University of Science and Technology,Zhenjiang 212000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高无人机路径规划在复杂环境中的收敛速度和收敛精度,避免陷入局部最优,提出了一种基于改进蜘蛛蜂算法的无人机三维路径规划方法。本文在传统SWO算法中引入自适应t分布扰动变异和Cubic映射策略更新搜索阶段位置,避免局部早熟收敛;然后,引入周期性随机振幅动态调整追逐和逃逸阶段搜索方向,帮助算法跳出局部最优,并结合螺旋更新机制和Levy飞行策略增强算法全局寻优能力,提高算法收敛精度;最后,将ISWO算法在8个测试函数中进行性能验证并实验仿真,结果表明,复杂地形环境中ISWO算法执行时间相比传统SWO算法减少了 26.86%,并且较CPO、COA、GOOSE、PSO、GWO算法执行时间减少了13.80%~28.27%不等。同时,ISWO算法最小适应度值较传统SWO算法减小49.76%,较其他算法至少减小27.73%。由此得出,本文所提改进算法能够在复杂地形环境中快速得到一条更短且更安全的路径。

    Abstract:

    In order to enhance the convergence speed and accuracy of UAV path planning in complex environments, and to avoid falling into local optima, a novel three-dimensional UAV path planning method based on the improved spider wasp optimizer algorithm is proposed. This paper introduces an adaptive t-distribution disturbance mutation and cubic mapping strategy for updating the search stage positions within the traditional SWO algorithm, which helps to prevent premature convergence to local optima. Furthermore, a periodically random amplitude dynamic adjustment for the pursuit and escape phases is incorporated to assist the algorithm in escaping local optima. The spiral update mechanism and Levy flight strategy are combined to enhance the global optimization capability of the algorithm, thereby improving its convergence precision. Finally, the performance of the ISWO algorithm is validated through experiments on eight test functions, and simulation results indicate that the execution time of the ISWO algorithm in complex terrain environments is reduced by 26.86% compared to the traditional SWO algorithm, and by 13.80% to 28.27% compared to other algorithms such as CPO, COA, GOOSE, PSO, and GWO. Additionally, the minimum fitness value achieved by the ISWO algorithm is 49.76% lower than that of the traditional SWO algorithm, and at least 27.73% lower than that of other algorithms. Consequently, it is concluded that the proposed improved algorithm can efficiently obtain a shorter and safer path in complex terrain environments.

    参考文献
    相似文献
    引证文献
引用本文

张颖,姜文刚,陈一鸣,管文瑞.基于改进蜘蛛蜂算法的无人机三维路径规划[J].电子测量技术,2024,47(11):101-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-12
  • 出版日期:
文章二维码