基于SVM的液压机械驱动齿轮组故障诊断研究
DOI:
作者:
作者单位:

1.桂林电子科技大学海洋工程学院 北海 536000; 2.柳州工学院信息科学与工程学院 柳州 545000; 3.桂林理工大学计算机科学与工程学院 桂林 541004

作者简介:

通讯作者:

中图分类号:

TH165; TN911.7

基金项目:

国家自然科学基金项目(41562018)、广西创新驱动发展专项(AA19254016)资助


Research on fault diagnosis of hydraulic mechanical drive gear set based on SVM
Author:
Affiliation:

1.Ocean Engineering College, Guilin University of Electronic Technology,Beihai 536000, China; 2.School of Information Science and Engineering, Liuzhou Institute of Technology,Liuzhou 545000, China; 3.School of Computer Science and Engineering, Guilin University of Technology, Guilin 541004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对液压机械驱动齿轮组故障诊断结果精准度不佳、可靠性差等问题,本文提出基于SVM的液压机械驱动齿轮组故障诊断研究。采集了液压机械驱动齿轮组振动信号,构建液压机械驱动齿轮组故障信号分离模型;运用低秩算法分离液压机械驱动齿轮箱振源信号,设计齿轮组故障信号约束条件,完成液压机械驱动齿轮组分类;根据分类结果,采用SDAE模型提取液压机械驱动齿轮组故障特征,并将提取结果输入到支持向量机内训练,其最终输出结果就是最佳诊断结果,实现基于SVM的液压机械驱动齿轮组故障诊断研究。实验结果表明,通过对该方法开展故障检测及故障诊断测试,本文方法下分类错误率不超过3.5%,验证了该方法的可行性高。

    Abstract:

    This paper addresses the challenges of poor accuracy and reliability in fault diagnosis for hydraulic mechanical drive gear sets by proposing a research approach based on Support Vector Machines (SVM). The study begins by collecting vibration signals from the hydraulic mechanical drive gear group and constructing a fault signal separation model. Utilizing a low-rank algorithm, the research separates the vibration source signals of the hydraulic mechanical drive gearbox. Constraint conditions are designed for gear group fault signals to facilitate their classification. Based on these classification results, the SDAE model is employed to extract fault features from the hydraulic mechanical drive gear group. The extracted features are then input into the SVM for training, with the final output being the optimal diagnostic result. This approach achieves fault diagnosis of the hydraulic mechanical drive gear group based on SVM. Experimental results demonstrate that the classification error rate of this method does not exceed 3.5%, confirming its high feasibility.

    参考文献
    相似文献
    引证文献
引用本文

王宽田,姚江云,唐永忠,梁世华.基于SVM的液压机械驱动齿轮组故障诊断研究[J].电子测量技术,2024,47(13):10-17

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-07
  • 出版日期: