基于改进YOLOv8算法的绝缘子缺陷检测模型
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学电气与电子工程学院 武汉 430068; 2.湖北工业大学新能源及电网装备安全检测湖北省 工程研究中心 武汉 430068; 3.美国南卡罗来纳大学计算机科学与工程系 南开罗来纳州 29201

作者简介:

通讯作者:

中图分类号:

TP391.4; TN-9

基金项目:

国家自然科学基金(62202148)、国家留学基金(201808420418)、湖北省自然科学基金(2019CFB530)、湖北省科技厅重大专项(2019ZYYD020)资助


Insulator defect detection model based on improved YOLOv8 algorithm
Author:
Affiliation:

1.School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China; 2.Hubei Engineering Research Center for Safety Inspection of New Energy and Grid Equipment, Hubei University of Technology,Wuhan 430068, China; 3.Department of Computer Science and Engineering, University of South Carolina, South Carolina 29201, USA

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前YOLO目标检测算法在绝缘子缺陷检测领域任然是最主流的方法,然而现有的YOLO模型框架参数量庞大导致户外部署难度加大,同时户外拍摄的绝缘子图像背景复杂,其缺陷更是微小导致难以被检测。针对上述问题,本文提出了一种基于YOLOv8n目标检测框架而改进得到的绝缘子缺陷检测模型YOLOv8-GCS,以降低模型的参数量并提高模型的检测精度。首先将模型中的C2f模块换成更加轻量级的Ghost卷积模块,以降低模型的计算量和参数量。然后在主干网络末尾和第二个检测头处加入CoordAtt注意力模块,抑制复杂背景对绝缘子缺陷部位的影响从而提高模型的检测精度。最后再引入一个SPD-Conv模块,让网络模型在二倍下采样的过程中无重要信息的损失同时增强网络模型对重要特征的学习率,进一步提高模型的检测性能。分析实验结果可知,本文算法与基线模型相比mAP50提高了4%,召回率和查全率分别提高了4.7%和1.3%,参数量降低了26.7%,保存结果的权重文件大小降低了1.5 MB,绝缘子破损和闪络缺陷的AP50分别提高了4%和8.1%。

    Abstract:

    At present, YOLO object detection algorithm is still the most mainstream method in the field of insulator defect detection, however, the existing YOLO model framework has a large number of parameters leading to the difficulty of outdoor deployment, and at the same time, the background of the insulator images taken outdoors is complex, and the defects are even more tiny, making it very difficult to be detected. To address the above problems, this paper proposes an improved insulator defect detection model YOLOv8-GCS based on the YOLOv8n object detection framework to reduce the number of parameters in the model and improve the detection precision of the model. Firstly, the C2f block in the model is replaced by a more lightweight Ghost convolution block to reduce the computational and parametric quantities of the model. Then the Coord Attention module is added at the end of the backbone network and at the second detection head to suppress the influence of the complex background on the defective parts of insulators and thus improve the detection precision of the model. At last, an SPD-Conv block is introduced so that the model of the network has no loss of important information in the process of two-fold downsampling and at the same time enhances the learning rate of the model of the network on the important features, which further improves the detection performance of the model. Analyzing the experimental results, it can be seen that the algorithm in this paper improves the mAP50 by 4% compared with the baseline model, the recall rate and the check all rate by 4.7% and 1.3%, respectively, the number of parameters is reduced by 26.7%, the size of the weight file to save the results is reduced by 1.5 MB, and the AP50 of insulator broken and pollution-flashover are improved by 4% and 8.1%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

熊炜,黄玉谦,孟圣哲.基于改进YOLOv8算法的绝缘子缺陷检测模型[J].电子测量技术,2024,47(12):132-139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-04
  • 出版日期:
文章二维码