基于改进YOLOv8的SOP芯片缺陷检测研究
DOI:
CSTR:
作者:
作者单位:

1.桂林理工大学机械与控制工程学院 桂林 541006; 2.广西高校先进制造与自动化技术重点实验室 桂林 541006

作者简介:

通讯作者:

中图分类号:

TN407

基金项目:

国家自然科学基金地区基金(52065016)项目资助


Research on defect detection of SOP chip based on improved YOLOv8
Author:
Affiliation:

1.College of Mechanical and Control Engineering, Guilin University of Technology,Guilin 541006, China; 2.Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region,Guilin 541006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对SOP芯片缺陷检测中因缺陷特征相似、缺陷目标小、缺陷尺度差异大造成的检测精度低的问题,本文提出基于改进YOLOv8的缺陷检测方法。通过使用SPD-Conv模块解决卷积池化过程中的信息丢失问题,并引入SimAM注意力机制,使模型学习三维通道中的信息,提高模型对缺陷特征的感知能力;同时使用BiFPN代替原特征提取网络,使用双向传递的多尺度特征融合,使模型能更好的区分拥有相似特征和尺度差异大的缺陷;最后增加一个小目标检测头,传递更多的低阶特征信息给高维检测网络,提高对小目标缺陷的检测效果。实验数据表明,该模型相比原模型mAP@0.5提高了5.4%,mAP@0.95提高了4.3%,召回率提高了3%,和其他模型相比有着显著优势。泛化实验中改进算法的mAP@0.5相比原模型也提升了2.7%,并设计了相关系统验证了算法的有效性。

    Abstract:

    Aiming at the low detection accuracy caused by similar defect features, small defect target and large difference in defect scale in SOP chip defect detection, this paper proposes a defect detection method based on improved YOLOv8. The problem of information loss in the process of convolution pooling is solved by using SPD-Conv module. And introducing the SimAM attention mechanism, the model can learn the information in the 3D channel and improve the model′s perception of defect features. At the same time, BiFPN was used to replace the original feature extraction network, and multi-scale feature fusion was used to enable the model to better distinguish the defects with similar features and large-scale differences. Finally, a small target detection header is added to transmit more low-order feature information to the high-dimensional detection network to improve the detection effect of small target defects. Experimental data show that compared with the original model mAP@0.5/% increased by 5.4%, mAP@ 0.95/% increased by 4.3%, recall rate increased by 3%, has significant advantages compared with other models. In the generalization experiment, the mAP@0.5 of the improved algorithm is also improved by 2.7% compared with the original model, and a relevant system is designed to verify the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

彭鸿瑞,杨桂华.基于改进YOLOv8的SOP芯片缺陷检测研究[J].电子测量技术,2024,47(12):71-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-04
  • 出版日期:
文章二维码