基于cGAN-SAE的室内定位指纹生成方法
DOI:
CSTR:
作者:
作者单位:

1.桂林理工大学物理与电子信息工程学院 桂林 541006; 2.桂林理工大学计算机科学与工程学院 桂林 541006; 3.桂林理工大学广西嵌入式技术与智能系统重点实验室 桂林 541006

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家自然科学基金(62362017)项目资助


Indoor positioning fingerprint generation method based on cGAN-SAE
Author:
Affiliation:

1.School of Physics and Electronic Information Engineering, Guilin University of Technology,Guilin 541006, China; 2.School of Computer Science and Engineering, Guilin University of Technology,Guilin 541006, China; 3.Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin University of Technology,Guilin 541006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对室内定位中指纹采集成本高、构建数据集难等问题,提出了一种基于条件稀疏自编码生成对抗网络的室内定位指纹生成方法。该方法通过增加自编码器隐藏层和输出层,增强了特征提取能力,引导生成器学习并生成指纹数据的关键特征。利用指纹选择算法筛选出最相关的指纹数据,扩充至指纹数据库中,并用于训练卷积长短时记忆网络模型以进行在线效果评估。实验结果表明,条件稀疏自编码生成对抗网络在不增加采集样本的情况下,提高了多栋多层建筑室内定位的精度。与原始条件生成对抗网络模型相比,在UJIIndoorLoc数据集上的预测中,定位误差降低了6%;在实际应用中,定位误差降低了14%。

    Abstract:

    To address the issues of high fingerprint collection costs and the difficulty of constructing datasets in indoor positioning, a method for indoor positioning fingerprint generation based on a conditional sparse autoencoder generative adversarial network is proposed. This method enhances the feature extraction capability by adding hidden and output layers to the autoencoder, guiding the generator to learn and generate key features of fingerprint data. A fingerprint selection algorithm is used to filter out the most relevant fingerprint data, which is then added to the fingerprint database and used to train a convolutional long shortterm memory network model for online performance evaluation. Experimental results show that the conditional sparse autoencoder generative adversarial network improves the accuracy of indoor positioning in multi-building, multi-floor environments without increasing the number of collected samples. Compared to the original conditional generative adversarial network model, the positioning error in predictions on the UJIIndoorLoc dataset is reduced by 6%, and in practical applications, the positioning error is reduced by 14%.

    参考文献
    相似文献
    引证文献
引用本文

刘伟,王智豪,李卓,韦嘉恒.基于cGAN-SAE的室内定位指纹生成方法[J].电子测量技术,2024,47(14):57-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码