基于对抗二次自编码器和集成学习的工业过程早期故障检测
DOI:
CSTR:
作者:
作者单位:

新疆大学电气工程学院 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TP277;TN06

基金项目:

国家自然科学基金(62303394)、新疆维吾尔自治区自然科学基金(2022D01C694)、新疆维吾尔自治区高校基本科研业务费科研项目(XJEDU2023P025)资助


Incipient fault detection of industrial processes based on adversarial quadratic autoencoder and ensemble learning
Author:
Affiliation:

College of Electrical Engineering, Xinjiang University,Urumqi 830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于工业过程早期微小故障存在数据振幅小,特征强耦合的特点,导致传统自编码器模型对此类故障的检测效果不佳,对此,提出一种基于对抗二次自编码器和集成学习的工业过程早期故障检测方法。首先引入一种二次型神经元嵌入普通自编码器模型的隐藏层中,增加模型的表达能力,其次提出一种对抗性的二次自编码器,在训练过程中引入GAN网络,使自编码器的特征学习遵循特定的概率分布。然后利用集成学习思想对正常工况数据进行采样,给每个采样的子集训练一个对抗二次自编码器,利用每个子模型的SPE和T2统计量分别生成两个矩阵,接着在生成的矩阵上使用单步滑动窗口内奇异值分解的融合策略,将每个窗口内的最大奇异值作为检测统计量。使用一个数值例子和TE过程对所提方法进行验证。实验结果表明所提方法具有良好的早期微小故障检测性能。

    Abstract:

    Due to the characteristics of early minor faults in industrial processes, such as small data amplitudes and strong feature coupling, the detection performance of traditional autoencoder models for these faults is poor. In response, a method for early fault detection in industrial processes based on adversarial quadratic autoencoders and ensemble learning is proposed. Initially, a quadratic neuron is introduced into the hidden layer of a conventional autoencoder model to enhance its expressive power. Subsequently, an adversarial quadratic autoencoder is introduced, incorporating a GAN network during training to enforce feature learning to adhere to specific probability distributions. Then, employing the concept of ensemble learning, normal operational data is sampled, and each subset is used to train an adversarial quadratic autoencoder. Subsequently, two matrices, SPE and T2 statistical quantities, are generated for each subset model. A fusion strategy utilizing singular value decomposition within a single-step sliding window is employed to utilize the maximum singular value within each window as a detection statistic. The proposed method is validated using a numerical example and the TE process, demonstrating its effectiveness in early detection of minor faults in industrial processes.

    参考文献
    相似文献
    引证文献
引用本文

刘喜平,高丙朋,蔡鑫.基于对抗二次自编码器和集成学习的工业过程早期故障检测[J].电子测量技术,2024,47(12):1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-04
  • 出版日期:
文章二维码