自适应多元优化局部放电识别算法研究
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院 昆明 650091; 2.重庆邮电大学通信与信息工程学院 重庆 400065

作者简介:

通讯作者:

中图分类号:

TM835;TN01

基金项目:

国家自然科学基金(62163036)项目资助


Adaptive multivariant optimization algorithm for partial discharge recognition
Author:
Affiliation:

1.School of Information Science and Technology, Yunnan University,Kunming 650091, China; 2.School of Information and Communication Engineering, Chongqing University of Posts and Telecommunications,Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    局部放电作为电力设备绝缘系统失效的早期主要表现,准确有效识别对检修计划的制定及实施,保障电力系统安全可靠运行具有重要意义。为进一步提高局部放电故障识别准确率,引入了基于多元化结构的过程记忆全局局部交替搜索多模态智能多元优化算法对局部放电故障进行识别,但算法搜索元构建具有随机性及相关参数的设定对实际环境下复杂局部放电故障识别具有较高针对性;针对这些问题,本文提出了自适应多元优化局部放电识别算法,该方法首先对数据样本进行网格划分映射,其次利用网格对象的密度差异性滤除部分稀疏网格数据点,探索高密度区域密度峰值点个数作为局部放电潜在故障类别数,最后通过具有自适应搜索记忆能力的多元优化算法不断全局局部交替搜索实现自动识别局部放电故障。为验证本文算法的有效性,将其应用于高压设备的电晕放电、悬浮放电、气隙放电、沿面放电局部放电数据集以及实际工况下气体绝缘全封闭组合电器绝缘表面局部放电数据集,实验结果表明,该方法平均识别准确率分别比RDB、KPP、SVM-KNN、DPC-DLP、GWOKM、PSO、MOA算法提高了19.53%、13.04%、19.46%、37.18%、7.79%、8.13%、4.19%,说明了本文提出的自适应多元优化局部放电识别算法的有效性,对实际局部放电故障类型识别准确率的提高具有重要意义。

    Abstract:

    The correct identification of partial discharge (PD) as an early indication of many insulation problems in electrical equipment is crucial for formulating maintenance plans which is an effective way to avoid catastrophic failure as the associated defects are treated at an early stage. The memory-based Multimodal multivariant optimization algorithm(MOA) is applied for PD fault identification based on an iterative global and local search to further improve the accuracy of partial discharge (PD) fault identification. However, the construction of the algorithm′s search element has randomness and the setting of related parameters has high pertinence to the identification of complex PD faults in the actual environment. So This article proposes a novel adaptive multivariant optimization algorithm for PD recognition(AMOA).The first step is concerned with the PD data projection into different grids, in which the data may be removed from the data set if it has sparse local density and number of data peak density points are explored as potential PD fault categories if it has high density. After that, the memory-based MOA is applied to identify the PD fault based on an iterative global and local search. With a view to examining the validity of the proposed method, it is applied to the PD datasets of corona discharge, suspension discharge, air gap discharge, discharge along the surface in high-voltage equipment,as well as to the PD datasets of Insulator Surface discharge in GIS under actual operating conditions. The results show that it’s average recognition accuracy is 19.53%、13.04%、19.46%、37.18%、7.79%、8.13%and 4.19% higher than that obtained by the RDB, KPP, SVM-KNN, DPC-DLP, GWOKM, PSO, and MOA algorithms, respectively. It could be concluded that the proposed approach offers the advantages of high PD fault recognition for the electrical equipment.

    参考文献
    相似文献
    引证文献
引用本文

夏金平,高莲,李鹏,陈昌川.自适应多元优化局部放电识别算法研究[J].电子测量技术,2024,47(14):10-17

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码