基于全局与局部注意力的车辆方位场景识别
DOI:
CSTR:
作者:
作者单位:

1.华北电力大学控制与计算机工程学院 保定 071003; 2.邦邦汽车销售服务(北京)有限公司 北京 100020

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

国家自然科学基金资助项目(62373151)、河北省自然科学基金面上项目(F2023502010)、中央高校基本科研业务费专项资金(2023JC006)项目资助


Vehicle orientation scene recognition based on global-local attention
Author:
Affiliation:

1.School of Control and Computer Engineering, North China Electric Power University,Baoding 071003, China; 2.Bangbang Automobile Sales and Service (Beijing) Co., Ltd.,Beijing 100020, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前车辆方位场景识别任务中存在因特征相似而导致的左右类别、前后类别识别混淆等问题,设计了融合全局局部注意力的车辆方位场景识别方法。首先,引入车辆多方位场景的概念,通过OSMNet方位场景匹配网络进行特征提取并进行场景的分类,其次,为使模型在不同方位场景中聚焦关键区域以有效学习车辆的空间方位,设计了全局局部注意力模块。最后,针对部分车辆方位场景之间存在类间距离小于类内距离的问题,设计了全局局部位置注意力模块。在构建的8类场景数据集上进行实验,消融实验显示,本文所提出的DCBAM和HGLP模块有效地增强了对特征图的全局和局部信息的捕捉能力,将模型识别准确率提高了3.54%和4.22%;对比实验显示,所提模型的准确率达到了95.49%,与基线模型相比提高了5.46%,模型总体识别效果优于其他分类模型,其中大部分方位的识别效果优于基线模型。结果表明本文提出的改进分类模型有效的学习了车辆方位信息,为远中近景图像的匹配提供桥梁,同时也为车辆多部件检测和分割等任务奠定基础。

    Abstract:

    To address issues such as confusion in distinguishing left-right and front-back categories due to similar features in current vehicle orientation scene recognition tasks, we proposed a vehicle orientation scene recognition method that integrates global-local attention. We introduced the concept of multi-view vehicle scenes, utilized OSMNet for feature extraction and scene classification, and developed a global-local attention module to focus on key areas across different orientation scenes for effective spatial orientation learning. Additionally, we designed a global-local positional attention module to address overlapping class distances between certain vehicle orientation scenes.Experiments on an 8-class scene dataset demonstrated that our D-CBAM and HGLP modules effectively enhanced the capture of global and local information in feature maps, improving model recognition accuracy by 3.54% and 4.22%, respectively, in ablation studies. Comparative experiments showed that our model achieved an accuracy of 95.49%, which is 5.46% higher than the baseline model. Overall, our model outperformed other classification models in recognizing most orientations better than the baseline model. These results demonstrate that our improved classification model effectively learns vehicle orientation information, bridging the gap for matching images from distant, intermediate, and near perspectives, and laying a foundation for tasks such as multi-part vehicle detection and segmentation.

    参考文献
    相似文献
    引证文献
引用本文

翟永杰,刘璇,王新颖,王乾铭,刘金龙.基于全局与局部注意力的车辆方位场景识别[J].电子测量技术,2024,47(14):96-107

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码